Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T09:16:04.547Z Has data issue: false hasContentIssue false

The experimental determination of hydromagnesite precipitation rates at 22.5–75ºC

Published online by Cambridge University Press:  05 July 2018

U.-N. Berninger*
Affiliation:
Géoscience Environnement Toulouse, CNRS-UPS-OMP, 14 av. Édouard Belin, 31400 Toulouse, France Department für Geo- und Umweltwissenschaften, LMU, Theresienstr. 41, 80333 München, Germany
G. Jordan
Affiliation:
Department für Geo- und Umweltwissenschaften, LMU, Theresienstr. 41, 80333 München, Germany
J. Schott
Affiliation:
Géoscience Environnement Toulouse, CNRS-UPS-OMP, 14 av. Édouard Belin, 31400 Toulouse, France
E. H. Oelkers
Affiliation:
Géoscience Environnement Toulouse, CNRS-UPS-OMP, 14 av. Édouard Belin, 31400 Toulouse, France Department of Earth Sciences, UCL, Gower Street, London WC1E 6BT, UK
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Natural hydromagnesite (Mg5(CO3)4(OH)2·4H2O) dissolution and precipitation experiments were performed in closed-system reactors as a function of temperature from 22.5 to 75ºC and at 8.6 < pH < 10.7. The equilibrium constants for the reaction Mg5(CO3)4(OH)2·4H2O + 6H+ = 5Mg2+ + 4HCO3 + 6H2O were determined by bracketing the final fluid compositions obtained from the dissolution and precipitation experiments. The resulting constants were found to be 1033.7±0.9, 1030.5±0.5 and 1026.5±0.5 at 22.5, 50 and 75ºC, respectively. Whereas dissolution rates were too fast to be determined from the experiments, precipitation rates were slower and quantified. The resulting BET surface areanormalized hydromagnesite precipitation rates increase by a factor of ~2 with pH decreasing from 10.7 to 8.6. Measured rates are approximately two orders of magnitude faster than corresponding forsterite dissolution rates, suggesting that the overall rates of the low-temperature carbonation of olivine are controlled by the relatively sluggish dissolution of the magnesium silicate mineral.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
© [2014] The Mineralogical Society of Great Britain and Ireland. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

References

Alfredsson, H.A., Hadrarson, B.S., Franzson, H. and Gislason, S.R. (2008) CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site. Mineralogical Magazine, 72, 15.CrossRefGoogle Scholar
Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E. and Gibert, B. (2009) Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environmental Science & Technology, 43, 12261231.CrossRefGoogle ScholarPubMed
Aradóttir, E.S.P., Sonnenthal, E.L., Björnsson, G. and Jónsson, H. (2012) Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. International Journal of Greenhouse Gas Control, 9, 2440.CrossRefGoogle Scholar
Béarat, H., McKelvy, M.J., Chizmeshya, A.V.G., Gormley, D., Nunez, R., Carpenter, R.W., Squires, K. and Wolf, G.H. (2006) Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. Environmental Science & Technology, 40, 48024808.CrossRefGoogle ScholarPubMed
Brown, P.L., Drummond, S.E. and Palmer, D.A. (1996) Hydrolysis of magnesium (II) at elevated temperatures. Journal of the Chemical Society-Dalton Transactions, 1996, 30713075.CrossRefGoogle Scholar
Brunauer, S., Emmett, P. and Teller, E. (1938) Adsorpotion of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Burton, E.A. and Walter, L.M. (1987) Relative precipitation rates of aragonite and Mg calcite from seawater – temperature or carbonate control. Geology, 15, 111114.2.0.CO;2>CrossRefGoogle Scholar
Daval, D., Sissmann, O., Menguy, N., Saldi, G.D., Guyot, F., Martinez, I., Crovixier, J., Garcia, B., Machouk, I., Knauss, K. and Hellmann, R. (2011) Influence of amorphous silica layer formation on the dissolution rate of olivine at 90ºC and elevated pCO2 . Chemical Geology, 284, 193209.CrossRefGoogle Scholar
Declercq, J., Bosc, O. and Oelkers, E.H. (2013) Do organic acids affect forsterite dissolution rates? Applied Geochemistry, 39, 6977.Google Scholar
Flaathen, T.K., Oelkers, E.H., Gislason, S.R. and Aagaard, P. (2011) The effect of dissolved sulphate on calcite precipitation kinetics and consequences for subsurface CO2 storage. Energy Procedia, 4, 50375043.CrossRefGoogle Scholar
Gautier, Q., Bénézeth, P., Mavromatis, V. and Schott, J. (2014) Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75ºC. Geochimica et Cosmochimica Acta, 138, 120.CrossRefGoogle Scholar
Gislason, S.R. and Oelkers, E.H. (2014) Carbon storage in basalt. Science 344, 373374.Google ScholarPubMed
Gislason, S.R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardó ttir, H., Sigfússon, G., Brocker, W.S., Matter, J., Stute, M., Axelsson, G. and Fridriksson, T. (2010) Mineral sequestration of carbon dioxide in basalt: A preinjection overview of the CarbFix project. International Journal of Greenhouse Gas Control, 4, 537545.CrossRefGoogle Scholar
Gysi, A.P. and Stefansson, A. (2012) CO2–water–basalt interaction. Low-temperature experiments and implications for CO2 sequestration into basalts. Geochimica et Cosmochimica Acta, 81, 129152.CrossRefGoogle Scholar
Hänchen, M., Prigiobbe, V., Storti, G., Seward, T.M. and Mazzotti, M. (2006) Dissolution kinetics of fosteritic olivine at 90–150ºC including effects of the presence of CO2 . Geochimica et Cosmochimica Acta, 70, 44034416.CrossRefGoogle Scholar
Harouiya, N., Chairat, C., Kohler, S.K. and Oelkers, E.H. (2007) The dissolution kinetics and apparent solubility of natural apatite in close system reactors at temperatures from 5 to 50ºC and pH from 1 to 6. Chemical Geology, 244, 554568.CrossRefGoogle Scholar
Helgeson, H.C., Delaney, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock forming minerals. American Journal of Science, 278A, 1228.Google Scholar
Johnson, J.W., Oelkers, E.H. and Helgeson, H.C. (1992) SUPCRT92: A software package for calculating the standard molal properties of minerals gases, aqueous species and reactions among them from 1 to 5000 bars and 0 to 1000ºC. Computers & Geosciences, 18, 899947.CrossRefGoogle Scholar
King, H.E.,Plümper, O. and Putnis, A. (2010) Effect of secondary phase formation on the carbonation of olivine. Environmental Science & Technology, 44, 65036509.CrossRefGoogle ScholarPubMed
Lackner, K.S., Wendt, C.H., Butt, D.P., Joyce, E.L. and Sharp, D.H. (1995) Carbon dioxide disposal in carbonate minerals. Energy, 20, 11531170.CrossRefGoogle Scholar
Lakshtanov, L.Z. and Sti Pp. S.L.S. (2010) Interaction between silica and calcium carbonate: 1. Spontaneous precipitation of calcium carbonate in the presence of dissolved silica. Geochimica et Cosmochimica Acta, 74, 26552664.CrossRefGoogle Scholar
Marini, L. (2007) Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling. Elsevier, Amsterdam, 470 pp.Google Scholar
Matter, J.M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefansson, A., Wolff-Boenisch, D., Gunnlaugsson, E., Axelsson, G. and Bjornsson, G. (2009) Permanent carbon dioxide storage into basalt: The CarbFix pilot project Iceland. Energy Procedia, 1, 36413646.CrossRefGoogle Scholar
Matter, J.M., Broecker, W.S., Gislason, S.R., Gunnlaugsson, E., Oelkers, E.H., Stute, M., Sigurdardottir, H., Stefansson, A., Alfredsson, H.A., Aradottir, E.S., Axelsson, G., Sigfusson, B. and Wolff-Boenisch, D. (2011) The CarbFix Pilot Project – Storing Carbon Dioxide in basalt. Energy Procedia, 4, 55795585.CrossRefGoogle Scholar
Mavromatis, V., Pearce, C.R., Shirokova, L.S., Bundeleva, I.A., Pokrovsky, O.S., Bénézeth, P. and Oelkers, E.H. (2012) Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochimica et Cosmochimica Acta, 76, 161174.CrossRefGoogle Scholar
McGrail, B.P., Schaef, H.T., Ho, A.M., Chien, Y.J., Dooley, J.J. and Davidson, C.L. (2006) Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical Research: Solid Earth, 111, B12, DOI: 10.1029/2005JB004169.CrossRefGoogle Scholar
Millero, F., Huang, F., Graham, T. and Pierrot, D. (2007) The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochimica et Cosmochimica Acta, 71, 4655.CrossRefGoogle Scholar
Oelkers, E.H. (2001) An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentrations. Chemical Geology, 175, 485494.CrossRefGoogle Scholar
Oelkers, E.H., Gislason, S.R. and Matter, J. (2008) Mineral carbonation of CO2 . Elements, 4, 337.CrossRefGoogle Scholar
Oelkers, E.H., Bénézeth, P. and Pokrovsky, G.S. (2009) Thermodynamic databases for water–rock interaction. Pp. 146 in: Thermodynamics and Kinetics of Water–Rock Interaction (E.H. Oelkers and J. Schott, e.i.ors). Reviews in Mineralogy and Geochemistry, 70, Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Oskierski, H.C., Dlugogorski, B.Z. and Jacobsen, G. (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chemical Geology, 358, 156169.CrossRefGoogle Scholar
Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s guide to PHREEQC (version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-resources Investigation Report 99-4259, Pp. 312.Google Scholar
Pokrovsky, O.S. and Schott, J. (2000) Kinetics and mechanism of forsterite dissolution at 25ºC and pH from 1 to 12. Geochimica et Cosmochimica Acta, 64, 313325.CrossRefGoogle Scholar
Pokrovsky, O.S., Golubev, S.V., Schott, J. and Castillo, A. (2009) Calcite dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150ºC and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins. Chemical Geology, 265, 2032.CrossRefGoogle Scholar
Prigiobbe, V.,Hänchen, M., Werner, M., Baciocchi, R. and Mazzotti, M. (2009) Mineral carbonation processes for CO2 sequestration. Energy Procedia, 1, 48854890.CrossRefGoogle Scholar
Robie, R.A. and Hemingway, B.S. (1972) The heat capacities at low temperatures and entropies at 298.15 K of nesquehonite, MgCO3·3H2O and hydromagnesite. American Mineralogist, 57, 17681781.Google Scholar
Robie, R.A. and Hemingway, B.S. (1973) The enthalpies of formation of nesquehonite, MgCO3·3H2O and hydromagnesite, 5MgO·4CO2·5H2O. Journal of Research of the U.S. Geological Survey, 1, 543547.Google Scholar
Rodriguez-Blanco, J.D., Shaw, S. and Benning, L.G. (2011) The kinetics and mechanism of amorphous calcium carbonate (ACC) crystallization to calcite. Nanoscale, 3, 265271.CrossRefGoogle Scholar
Ruiz-Agudo, E., Kudlacz, K., Putnis, C.V., Putnis, A. and Rodriguez-Navarro, C. (2013) Dissolution and carbonation of portlandite (Ca(OH)2) single crystals. Environmental Science & Technology, 47, 1134211349.CrossRefGoogle ScholarPubMed
Saldi, G.D., Jordan, G., Schott, J. and Oelkers, E.H. (2009) Magnesite growth rates as a function of temperature and saturation state. Geochimica et Cosmochimica Acta, 73, 56465657.CrossRefGoogle Scholar
Saldi, G.D., Schott, J., Pokrovsky, O.S., Gautier, Q. and Oelkers, E.H. (2012) An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200ºC as a function of pH, aqueous solution composition and chemical affinity.. Geochimica et Cosmochimica Acta, 83, 93109.CrossRefGoogle Scholar
Schaef, H.T., McGrail, B.P. and Owen, A.T. (2010) Carbonate mineralization of volcanic province basalts. International Journal of Greenhouse Gas Control, 4, 249261.CrossRefGoogle Scholar
Schaef, H.T., McGrail, B.P. and Owen, A.T. (2011) Basalt reactivity variability with reservoir depth in supercritical CO2 and aqueous phases. Energy Procedia, 4, 49774984.CrossRefGoogle Scholar
Schott, J., Pokrovsky, O.S. and Oelkers, E.H. (2009) The link between mineral dissolution/precipitation kinetics and solution chemistry. Pp. 207258 in: Thermodynamics and Kinetics of Water–Rock Interaction (E.H. Oelkers and J. Schott, e.i.ors). Reviews in Mineralogy and Geochemistry, 70, Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Seifritz, W. (1990) CO2 disposal by means of silicates. Nature, 345, 486.CrossRefGoogle Scholar
Shirokova, L.S., Mavromatis, V., Bundeleva, I., Pokrovsky, O.S., Bénézeth, P., Pearce, C., Gerard, E., Balor, S. and Oelkers, E.H. (2011) Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes? Biogeosciences Discussions, 8, 64736517.Google Scholar
Shirokova, L.S., Mavromatis, V., Bundeleva, I.A., Pokrovsky, O.S., Bénézeth, P., Gerard, E., Pearce, C.R. and Oelkers, E.H. (2013) Using Mg isotopes to trace cyanobacterially mediated magnesium carbonate precipitation in alkaline lakes. Aquatic Geochemistry, 19, 124.CrossRefGoogle Scholar
Teng, H.H., Dove, P.M. and de Yoreo, J.J. (2000) Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws. Geochimica et Cosmochimica Acta, 64, 22552266.CrossRefGoogle Scholar
Wogelius, R.A. and Walther, J.V. (1991) Olivine dissolution at 25ºC: effects of pH CO2 and organic acids. Geochimica et Cosmochimica Acta, 55, 943954.CrossRefGoogle Scholar
Xu, T.F., Apps, J.A. and Pruess, K. (2005) Mineral sequestration of carbon dioxide in a sandstone–shale system. Chemical Geology, 217, 295318.CrossRefGoogle Scholar
Zuddas, P. and Mucci, A. (1998) Kinetics of calcite precipitation from seawater: II Influence of the ionic strength. Geochimica et Cosmochimica Acta, 62, 757766.CrossRefGoogle Scholar