Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:26:11.909Z Has data issue: false hasContentIssue false

Evolution of nepheline from mafic to highly differentiated members of the alkaline series: the Messum complex, Namibia

Published online by Cambridge University Press:  05 July 2018

S. B. Blancher*
Affiliation:
UPMC Univ Paris 06, UMR 7193, ISTeP, F-75005, Paris, France CNRS, UMR 7193, ISTeP, F-75005, Paris, France
P. D'Arco
Affiliation:
UPMC Univ Paris 06, UMR 7193, ISTeP, F-75005, Paris, France CNRS, UMR 7193, ISTeP, F-75005, Paris, France
M. Fonteilles
Affiliation:
UPMC Univ Paris 06, UMR 7193, ISTeP, F-75005, Paris, France CNRS, UMR 7193, ISTeP, F-75005, Paris, France
M.-L. Pascal
Affiliation:
UPMC Univ Paris 06, UMR 7193, ISTeP, F-75005, Paris, France CNRS, UMR 7193, ISTeP, F-75005, Paris, France
*

Abstract

The change in chemical composition trend of magmatic nepheline through magma evolution has been characterized from the alkaline series of the Messum complex in which nepheline occurs in a succession of different mineral parageneses from mafic-rich (theralites) to strongly evolved felsic-rich rock types (nepheline syenites). The nepheline compositions are dependent on those of coexisting feldspar(s). They record an evolution parallel to that of the melt schematized according to experimental phase diagrams, from initially Ca-rich compositions in equilibrium with calcic plagioclase towards increasingly Ca-poor, Na-rich and Si-rich compositions. The K contents show a maximum that corresponds to the appearance of alkali feldspar in the parageneses. This evolution is qualitatively preserved in spite of the low-T Na/K re-equilibration typical of plutonic nephelines. Although a slight increase in the silica content of nepheline is consistent with the experimentally defined magmatic trend, several high-silica nephelines from the Messum rocks as well as from other reported occurrences, cannot be reconciled with the experimental data. The nepheline solid-solution model available suggests that such ‘abnormal’ compositions might be related to different crystallization mechanisms between natural nephelines and some synthetic analogues.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, K.-I. and Kushiro, I. (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contributions to Mineralogy and Petrology, 18, 326337.CrossRefGoogle Scholar
Baamrane Najjaj, N. (1994) Etude minéralogique et géochimique du complexe carbonatitique d’Iron Hill, dans le Colorado et du massif alcalin de Rainy Creek dans le Montana (Etats Unis), PhD Thesis, Université Paris 6, France (in French).Google Scholar
Bailey, D.K. and Schairer, J.F. (1964) Feldspar liquid equilibria in peralkaline liquids; the orthoclase effect. American Journal of Science, 262, 11981206.CrossRefGoogle Scholar
Barth, T.F.W. (1963) The composition of nepheline. Schweizerische Mineralogische und Petrographische Mitteilungen, 43, 153164.Google Scholar
Benson, W.N. (1942) The basic rocks of eastern Otago and their tectonic environment. Part III. Transactions and Proceedings of the Royal Society of New Zealand, 72, 160185.Google Scholar
Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 . Journal of Petrology, 29, 445522.CrossRefGoogle Scholar
Blancher, S.B. (2008) Le coeur alcalin du complexe du Messum, Namibie: Description pétrologique, inter pretation de l’évolution minéralogique et relations roches sous- et sur-saturées en silice, PhD thesis, Université Paris 6, France (in French). http://tel.archives-ouvertes.fr/docs/00/33/64/85/PDF/TheseSimonBlancher.pdf (15 Mb).Google Scholar
Brotzu, P., Melluso, L., Bennio, L., Gomes, C. B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C. and D’Antonio, M. (2007) Petrogenesis of the Earth Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil. Journal of South American Earth Sciences, 24, 93115.CrossRefGoogle Scholar
Buerger, M.J., Klein, G.E. and Donnay, G. (1954) Determination of the crystal structure of nepheline. American Mineralogist, 39, 805818.Google Scholar
Carmichael, I.S.E., Turner, F.J. and Verhoogen, J. (1974) Igneous Petrology. McGraw-Hill, New York.Google Scholar
Dawson, J.B., Smith, J.V. and Steele, I.M. (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. Journal of Petrology, 36, 797826.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rock- Forming Minerals, Volume 2A: Single-chain silicates. 2nd edition. The Geological Society, London.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (2004) Rock- Forming Minerals, volume 4B: Framework silicates. 2nd edition. The Geological Society, London.Google Scholar
Dollase, W.A. (1970) Least-squares refinement of the structure of a plutonic nepheline. Zeitschrift für Kristallographie, 132, 2744.CrossRefGoogle Scholar
Dollase, W.A. and Thomas, W.M. (1978) The crystal chemistry of silica-rich, alkali-deficient nepheline. Contributions to Mineralogy and Petrology, 66, 311318.CrossRefGoogle Scholar
Donnay, G., Schairer, J.F. and Donnay, J.D.H. (1959) Nepheline solid solutions. Mineralogical Magazine, 32, 93109.CrossRefGoogle Scholar
Edgar, A.D. (1964) Phase-equilibrium relations in the system nepheline-albite-water at 1000 kg/cm2 . Journal of Geology, 72, 448460.CrossRefGoogle Scholar
Edgar, A.D. (1984) Chemistry, occurrence and paragenesis of feldspathoids: a review. Pp. 501532 in: Feldspars and Feldspathoids (Brown, W.L. editor). NATO ASI series C, Mathematical and Physical Sciences, vol. 137. D. Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Ewart, A., Milner, S.C., Armstrong, R.A., and Duncan, A.R. (1998) Etendeka volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part I: Geochemical evidence of early cretaceous Tristan Plume melts and the role of crustal contamination in the Paranà -Etendeka CFB. Journal of Petrology, 39, 191225.CrossRefGoogle Scholar
Ewart, A., Milner, S.C., Duncan, A.R. and Bailey, M. (2002) The Cretaceous Messum igneous complex, S.W. Etendeka, Namibia: reinterpretation in terms of a downsag-cauldron subsidence model. Journal of Volcanology and Geothermal Research, 114, 251273.CrossRefGoogle Scholar
Flohr, M.J.K. and Ross, M. (1990) Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites. Lithos, 26, 6798.CrossRefGoogle Scholar
Gourgaud, A. and Vincent, P.M. (2004) Petrology of two continental alkaline intraplate series at Emi Koussi volcano, Tibesti, Chad. Journal of Volcanology and Geothermal Research, 129, 261290.CrossRefGoogle Scholar
Grapes, R.H. (1975) Petrology of the Blue Mountain Complex, Marlborough, New Zealand. Journal of Petrology, 16, 371428.CrossRefGoogle Scholar
Greig, J.W. and Barth, T.F.W. (1938) The system Na2O.Al2O3.2SiO2 (nephelite, carnegieite) - Na2O.Al2O3.6SiO2 (albite). American Journal of Science, 35, 93112.Google Scholar
Hamilton, D.L. (1961) Nephelines as crystallization temperature indicators. Journal of Geology, 69, 321329.CrossRefGoogle Scholar
Hamilton, D.L. and MacKenzie, W.S. (1960) Nepheline solid solution in the system NaAlSiO4-KAlSiO4-SiO2 . Journal of Petrology, 1, 5672.CrossRefGoogle Scholar
Hamilton, D.L. and MacKenzie, W.S. (1965) Phase equilibrium studies in the system NaAlSiO4 (nepheline)- KAlSiO4 (kalsilite)-SiO2-H2O. Mineralogical Magazine, 34, 214231.CrossRefGoogle Scholar
Hahn, T. and Buerger, M.J. (1955) Detailed structure of nepheline. American Mineralogist, 40, 319319.Google Scholar
Harris, C. (1995) Oxygen isotope geochemistry of the Mesozoic anorogenic complexes of Damaraland, northwest Namibia: evidence for crustal contamination and its effect on silica saturation. Contributions to Mineralogy and Petrology, 122, 308321.CrossRefGoogle Scholar
Harris, C., Marsh, J.S. and Milner, S.C. (1999) Petrology of the alkaline core of the Messum igneous complex, Namibia: evidence for the progressively decreasing effect of crustal contamination. Journal of Petrology, 40, 13771397.CrossRefGoogle Scholar
Hatch, F.H., Wells, A.K. and Wells, M.K. (1961) Petrology of the Igneous Rocks. 12th edition. Thomas Murby Co., London.Google Scholar
Henderson, C.M.B. and Gibb, F.G.F. (1972) Plagioclase-Ca-rich-nepheline intergrowths in a syenite from Marangudzi complex, Rhodesia, Mineralogical Magazine, 38, 670677.CrossRefGoogle Scholar
Henderson, C.M.B. and Gibb, F.G.F. (1983) Felsic mineral crystallization trends in differentiating alkaline basic magmas. Contributions to Mineralogy and Petrology, 84, 355364.CrossRefGoogle Scholar
Hollister, L.S. and Gancarz, A.J. (1971) Compositional sector-zoning in clinopyroxene from the Narce area, Italy. American Mineralogist, 56, 959979.Google Scholar
Hovis, G.L. and Roux, J. (1993) Thermodynamic mixing properties of nepheline-kalsilite crystalline solutions. American Journal of Science, 293, 11081127.CrossRefGoogle Scholar
Hovis, G.L., Spearing, D.R., Stebbins, J.F., Roux, J. and Clare, A. (1992) X-ray powder diffraction and 23Na, 27Al, and 29Si, MAS-NMR investigation of nepheline- kalsilite crystalline solutions. American Mineralogist, 77, 1929.Google Scholar
Jamieson, H.E. and Roeder, P.L. (1984) The distribution of Mg and Fe2+ between olivine and spinel at 1300°C. American Mineralogist, 69, 283291.Google Scholar
Klaudius, J. and Keller, J. (2006) Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania. Lithos, 91, 173190.CrossRefGoogle Scholar
Korn, H. and Martin, H. (1954) The Messum igneous complex in south-west Africa. Transactions of the Geological Society of South Africa, 57, 83122.Google Scholar
Le Maitre, R.W., Streickeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G., Dudek, A., Efromova, S., Keller, J., Lameyre, J., Sabine, P.A., Schid, R., Sorensen, H. and Woolley, A.R. (2002) Igneous Rocks: a Classification and Glossary of Terms. 2nd edition, Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford.CrossRefGoogle Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35, 219246.Google Scholar
Legendre, G., Maury, R.C., Caroff, M., Guillou, H., Cotton, J., Chauvel, C., Bollinger, C., Hémond, C., Guille, G., Blais, S., Rossi, P. and Savanier, D. (2005) Origin of exceptionally abundant phonolites on Ua Pou Island (Marquesas, French Polynesia): Partial melting of basanites followed by crustal contamination. Journal of Petrology, 46, 19251962.CrossRefGoogle Scholar
MacKenzie, W.S. (1954) The system NaAlSiO4-NaAlSi3O8-H2O. Carnegie Institution of Washington Yearbook, 53, 119120.Google Scholar
Mann, U., Marks, M. and Markl, G. (2006) Influence of oxygen fugacity on mineral compositions in peralkaline melts: The Katzenbuckel volcano, Southwest Germany. Lithos, 91, 262285.CrossRefGoogle Scholar
Mathias, M. (1956) The petrology of the Messum igneous complex, south-west Africa. Transactions of the Geological Society of South Africa, 59, 2358.Google Scholar
Mathias, M. (1957) The geochemistry of the Messum igneous complex, south-west Africa. Geochimica et Cosmochimica Acta, 12, 2946.CrossRefGoogle Scholar
Melluso, L., Morra, V., Riziky, H., Veloson, J., Lustrino, M., Del Gatto, L. and Modeste, V. (2007) Petrogenesis of a basanite-tephrite-phonolite volcanic suite in the Bobaomby (Cap d’Ambre) peninsula, northern Madagascar. Journal of African Earth Sciences, 49, 2942.CrossRefGoogle Scholar
Morbidelli, L., Gomes, C.B., Brotzu, P., D’Acquarica, S., Garbarino, C., Ruberti, E. and Traversa, G. (2000) The Pariquera Açu K-alkaline complex and southern Brazil lithospheric mantle source characteristics. Journal of Asian Earth Sciences, 18, 129150.CrossRefGoogle Scholar
Morimoto, C.N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K. and Gottardi, G. (1988) Nomenclature of pyroxenes, Subcommittee on Pyroxenes, Commission on New Minerals and Mineral Names, International Mineralogical Association. American Mineralogist, 73, 11231133.Google Scholar
Morse, S.A. and Ross, M. (2004) Kiglapait mineralogy IV: The augite series. American Mineralogist, 89, 13801395.CrossRefGoogle Scholar
Nkoumbou, C., Déruelle, B. and Velde, D. (1995) Petrology of the Mt Etinde nephelinite series. Journal of Petrology, 36, 373395.CrossRefGoogle Scholar
Norris, G. and MacKenzie, W.S. (1976) Phase relations in the system NaAlSiO4-KAlSiO4-CaAl2Si2O8-SiO2 at PH2O = 1 kbar. Progress in experimental petrology, Third report, 79-81. The Natural Environment Research Council Publications Series D, n° 61976.Google Scholar
Pan, V. and Longhi, J. (1990) The system Mg2SiO4-Ca2SiO4-CaAl2O4-NaAlSiO4-SiO2: one atmosphere liquidus equilibria analogs of alkaline mafic lavas. Contributions to Mineralogy and Petrology, 105, 569584.CrossRefGoogle Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W. T. (1986) Numerical Recipes, The Art of Scientific Computing. Cambridge University Press, Cambridge, UK.Google Scholar
Price, R.C., Cooper, A.F., Woodhead, J.D. and Cartwright, I. (2003) Phonolitic diatremes within the Dunedin Volcano, South Island, New Zealand. Journal of Petrology, 44, 20532080.CrossRefGoogle Scholar
Putnis, A. (1979) Electron petrography of high-temperature oxidation in olivine from the Rhum Layered Intrusion. Mineralogical Magazine, 43, 293296.CrossRefGoogle Scholar
Renne, P.R., Glen, J.M., Milner, S.C. and Duncan, A.R. (1996) Age of Etendeka flood volcanism and associated intrusions in southwestern Africa. Geology, 24, 659662.2.3.CO;2>CrossRefGoogle Scholar
Renne, P.R., Scott, G.R., Glen, J.M.G. and Feinberg, J.M. (2002) Oriented inclusions of magnetite in clinopyroxene: source of stable remanent magnetization in gabbros of the Messum Complex, Namibia. Geochemistry Geophysics Geosystems, 3, 10791090.CrossRefGoogle Scholar
Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. United States Geological Survey Bulletin, 1452.Google Scholar
Rock, N.M.S. (1978) Petrology and petrogenesis of the Monchique Alkaline Complex, Southern Portugal. Journal of Petrology, 19, 171214.CrossRefGoogle Scholar
Rossi, G., Oberti, R. and Smith, D.C. (1989) The crystalstructure of a K-poor Ca-rich silicate with the nepheline framework, and crystal-chemical relationships in the compositional space (K,Na,Ca)8 (Al,Si)16O32 . European Journal of Mineralogy, 1, 5970.CrossRefGoogle Scholar
Roux, J. (1979) Etudes physico-chimiques des feldspathoides et application aux problèmes pétrographiques. Thèse d’Etat, Université Paris XI (in French).Google Scholar
Roux, J. and Varet, J. (1975) Alkali feldspar liquid equilibrium relationships in peralkaline oversaturated systems and volcanic rocks. Contributions to Mineralogy and Petrology, 49, 6781.CrossRefGoogle Scholar
Sack, R.O. and Ghiorso, M.S. (1998) Thermodynamics of feldspathoid solutions. Contributions to Mineralogy and Petrology, 130, 256274.CrossRefGoogle Scholar
Schairer, J.F. and Yoder, H.S. (1964) Crystal and liquid trends in simplified alkali basalts. Carnegie Institution of Washington Year Book, 63, 6579.Google Scholar
Stephenson, D. (1972) Alkali clinopyroxenes from nepheline syenites of the South Qôroq Centre, South Greenland. Lithos, 5, 187201.CrossRefGoogle Scholar
Tilley, C.E. (1954) Nepheline-alkali feldspar parageneses. American Journal of Science, 252, 6575.CrossRefGoogle Scholar
Wass, S.Y. (1973) The origin and petrogenetic significance of hour-glass zoning in titaniferous clinopyroxenes. Mineralogical Magazine, 39, 133144.CrossRefGoogle Scholar
Wilkinson, J.F.G. and Hensel, H.D. (1994) Nephelines and analcimes in some alkaline igneous rocks. Contributions to Mineralogy and Petrology, 118, 7991.CrossRefGoogle Scholar
Wittke, J.H. and Holm, R.F. (1996) The association basanitic nephelinite feldspar ijolite nepheline monzosyenite at House Mountain Volcano, northcentral Arizona. The Canadian Mineralogist, 34, 221240.Google Scholar