Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T06:30:50.616Z Has data issue: false hasContentIssue false

The effect of pressure on thermal diffusivity in pyroxenes

Published online by Cambridge University Press:  05 July 2018

S. A. Hunt*
Affiliation:
Mineral Physics Institute, Department of Earth and Space Sciences, Stony Brook University, Stony Brook, NY 11794-2100, USA Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
A. M. Walker
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
R. J. McCormack
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
D. P. Dobson
Affiliation:
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
A. S. Wills
Affiliation:
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
L. Li
Affiliation:
Mineral Physics Institute, Department of Earth and Space Sciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
*

Abstract

The thermal diffusivity of diopside, jadeite and enstatite were measured at simultaneous pressures and temperatures of up to 7 GPa and 1200 K using the X-radiographic Ångström method. The measurements herein show that the pressure dependency of thermal diffusivity in pyroxenes is significantly greater than in olivine or garnet and that in the MORB-layer of a subducting slab the thermal diffusivity of pyroxenes are a factor of 1.5 greater than that of olivine. The temperature dependence of all the data sets is well described by a low-order polynomial fit to 1/K and the pressure dependence is exponential in 1/K, formulations which are consistent with the damped harmonic oscillator model for thermal properties.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berman, R.G. and Brown, T.H. (1985) Heat capacity of minerals in the system Na2O–K2O–CaO–MgO– FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contributions to Mineralogy and Petrology, 89, 168-183.CrossRefGoogle Scholar
Brown, J.M. (1999) The NaCl pressure standard. Journal of Applied Physics, 86, 5808-.Google Scholar
Chai, M., Brown, J.M. and Slutsky, L.J. (1996) Thermal diffusivity of mantle minerals. Physics and Chemistry of Minerals, 23, 470-475.CrossRefGoogle Scholar
de Koker, N. (2010) Thermal conductivity of MgO periclase at high pressure: implications for the D”region. Earth and Planetary Science Letters, 292, 392-398.CrossRefGoogle Scholar
Dobson, D.P., Hunt, S.A., Li, L. and Weidner, D.J. (2008) Measurement of thermal diffusivity at high pressures and temperatures using synchrotron radio-graphy. Mineralogical Magazine, 72, 539-544.CrossRefGoogle Scholar
Dobson, D.P., Hunt, S.A., McCormack, R., Lord, O.T., Weidner, D.J., Li, L. and Walker, A.M. (2010) Thermal diffusivity of MORB-composition rocks to 15 GPa: implications for triggering of deep seismicity. High Pressure Research, 30, 406-414.CrossRefGoogle Scholar
Gasparik, T. (1989) Transformation of enstatite–diopside–jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology, 102, 389-405.CrossRefGoogle Scholar
Goncharov, A.F., Beck, P., Struzhkin, V.V., Haugen, B.D. and Jacobsen, S.D. (2009) Thermalconductivity of lower-mantle minerals. Physics of the Earth and Planetary Interiors, 174, 24-32.CrossRefGoogle Scholar
Hofmeister, A.M. (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 283, 1699-1706.CrossRefGoogle ScholarPubMed
Hofmeister, A.M. (2006) Thermaldiffu sivity of garnets at high temperature. Physics and Chemistry of Minerals, 33, 45-62.CrossRefGoogle Scholar
Hofmeister, A.M. (2007) Pressure dependence of thermaltra nsport properties. Proceedings of the National Academy of Sciences, 104, 9192-9197.CrossRefGoogle ScholarPubMed
Hofmeister, A.M. (2010) Thermaldiffusivity of oxide perovskite compounds at elevated temperature. Journal of Applied Physics, 107, http://dx.doi.org/10.1063/1.3371815.CrossRefGoogle Scholar
Hofmeister, A.M. and Pertermann, M. (2008) Thermal diffusivity of clinopyroxenes at elevated temperature. European Journal of Mineralogy, 20, 537-549.CrossRefGoogle Scholar
Hofmeister, A.M., Branlund, J. M. and Pertermann, M. (2007) Properties of rock and minerals – thermal conductivity of the earth. Pp. 543-577 in: Treatise in Geophysics, volume 2 (Schubert, G. and Price, G.D., editors). Elsevier, Amsterdam, 656 pp.CrossRefGoogle Scholar
Jackson, J.M., Palko, J.W., Andrault, D., Sinogeikin, S.V., Lakshtanov, D.L., Wang, J., Bass, J.D. and Zha, C.-S. (2003) Thermalexpansion of natural orthoenstatite to 1473 K. European Journal of Mineralogy, 15, 469-473.CrossRefGoogle Scholar
Kanamouri, H., Fujii, N. and Mizutani, H. (1968) Thermaldiffusivity measurement of rock-forming minerals from 300 to 1100 K. Journal of Geophysical Research, 73, 595-605.Google Scholar
Katsura, T. (1993) Thermal diffusivity of silica glass at pressures up to 9 GPa. Physics and Chemistry of Minerals, 20, 201-208.CrossRefGoogle Scholar
Katsura, T. (1995) Thermaldiffusivity of olivine under upper mantle conditions. Geophysical Journal International, 122, 63-69.CrossRefGoogle Scholar
Khedari, J., Benigni, P., Rogez, J. and Mathieu, J. (1995) New apparatus for thermal-diffusivity measurements of refractory solid materials by the periodic stationary method. Review of Scientific Instruments, 66, 193-198.CrossRefGoogle Scholar
Kincaid, C. and Sacks, I.S. (1997) Thermala nd dynamical evolution of the upper mantle in subduction zones. Journal of Geophysical Research, 102(B6), 12613-.CrossRefGoogle Scholar
Kittel, C. (2004) Introduction to Solid State Physics, 8th edition. Wiley, New York, 704 pp.Google Scholar
Knight, K.S. and Price, G.D. (2008) Powder neutron diffraction studies of clinopyroxenes. 1. The crystal structure and thermoelastic properties of jadeite between 1.5 and 270 K. The Canadian Mineralogist, 46, 1593-1622.CrossRefGoogle Scholar
Kung, J., Jackson, I. and Liebermann, R.C. (2011) High temperature elasticity of polycrystalline orthoenstatite (MgSiO3). American Mineralogist, 96, 577-585.CrossRefGoogle Scholar
Li, L., Raterron, P., Weidner, D.J. and Chen, J. (2003) Olivine flow mechanisms at 8 GPa. Physics of the Earth and Planetary Interiors, 138, 113-129.CrossRefGoogle Scholar
Mauler, A., Bystricky, M., Kunze, K. and Mackwell, S. (2000) Microstructures and lattice preferred orientations in experimentally deformed clinopyroxene aggregates. Journal of Structural Geology, 22, 1633-1648.CrossRefGoogle Scholar
Nestola, F., Gatta, G.D. and Boffa Ballaran, T. (2006) The effect of Ca substitution on the elastic and structural behavior of orthoenstatite. American Mineralogist, 91, 809-815.CrossRefGoogle Scholar
Osako, M., Ito, E. and Yoneda, A. (2004) Simultaneous measurements of thermal conductivity the thermal diffusivity for garnet and olivine under high pressure. Physics of the Earth and Planetary Interiors, 143–144, 320-.Google Scholar
Pertermann, M. and Hofmeister, A.M. (2006) Thermal diffusivity of olivine-group minerals at high temperature. American Mineralogist, 91, 1747-1760.CrossRefGoogle Scholar
Petrunin, G.I. and Popov, V.G. (1995) Temperature dependence of lattice thermal conductivity of Earth's mineralsubs tance. Physics of the Solid Earth, 30, 617-623. [English translation].Google Scholar
Presnall, D.C. (1995) Phase diagrams of Earth-forming materials. Pp. 248-268 in: Mineral Physics and Crystallography: A Handbook of Physical Constants (Ahrens, T.J., editor). American Geophysics Union, Washington D.C., 354 pp.Google Scholar
Ringwood, A.E. (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta, 55, 2083-2110.CrossRefGoogle Scholar
Schatz, J.F. and Simmons, G. (1972) Thermalconductivity of Earth materials at high temperatures. Journal of Geophysical Research, 77, 6966-6983.CrossRefGoogle Scholar
Schloessin, H.H. and Dvořák, Z. (1972) Anisotropic lattice thermal conductivity in enstatite as a function of pressure and temperature. Geophysics Journal of the Royal Astronomical Society, 27, 499-516.CrossRefGoogle Scholar
Schubert, G., Turcotte, D.L. and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, UK, 940 pp.CrossRefGoogle Scholar
Stackhouse, S., Stixrude, L. and Karki, B.B. (2010) Thermal conductivity of periclase (MgO) from first principles. Physical Review Letters, 104, http://dx.doi.org/10.1103/PhysRevLett.103.125902.CrossRefGoogle Scholar
Weidner, D.J., Vaughan, M.T., Wang, L., Long, H., Li, L., Dixon, N.A. and Durham, W.B. (2010) Precise stress measurements with white synchrotron x rays. Review of Scientific Instruments, 81, http://dx.doi.org/10.1063/1.3263760.CrossRefGoogle Scholar
Xu, Y., Shankland, T.J., Linhardt, S., Rubie, D.C., Langenhorst, F. and Klasinski, K. (2004) Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Physics of the Earth and Planetary Interiors, 143–144, 336-.Google Scholar
Zhao, Y., Dreele, R.B.V., Shankland, T.J., Weidner, D.J., Zhang, J., Wang, Y. and Gasparik, T. (1997) Thermoelastic equation of state of jadeite NaAlSi2O6: an energy-dispersive Reitveld refinement study of low symmetry and multiple phases diffraction. Geophysical Research Letters, 24, 5-8.CrossRefGoogle Scholar