Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T16:20:01.790Z Has data issue: false hasContentIssue false

The Early Proterozoic carbonatite complex of Angico dos Dias, Bahia State, Brazil: geochemical and Sr-Nd isotopic evidence for an enriched mantle origin

Published online by Cambridge University Press:  05 July 2018

P. Antonini*
Affiliation:
Dipartimento di Ingegneria Chimica, dell’Ambiente e delle Materie Prime, University of Trieste, Italy
P. Comin-chiaramonti
Affiliation:
Dipartimento di Ingegneria Chimica, dell’Ambiente e delle Materie Prime, University of Trieste, Italy
C. B. Gomes
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Brazil
P. Censi
Affiliation:
Dipartimento di Scienze della Terra, University of Catania, Italy
B. F. Riffel
Affiliation:
Companhia Brasileira de Metalurgia e Mineração, Araxá, Minas Gerais State, Brazil
E. Yamamoto
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Brazil
*

Abstract

Borehole samples of carbonatites and phlogopite-pyroxenites from the Angico dos Dias (AdD) intrusive alkaline complex, State of Bahia, Brazil, have been investigated in terms of mineralogy, geochemistry and C-O-Sr-Nd isotopes. The AdD complex, of Early Proterozoic age (2 Ga), intrudes the northern side of the São Francisco Craton. Mineralogy and petrography indicate that the studied rocks only partially preserved their magmatic textural features owing to their metamorphic re-equilibration (greenschist facies). The REE contents and LREE/HREE ratios of the AdD carbonatites are very high (mean 3979±718 ppm and La/Yb = 215±23, respectively), as for most Precambrian magmatic carbonatites. The AdD carbonatites are also enriched in 18O (δ18O = 11.9 to 15.8‰), possibly due to secondary processes (e.g. metamorphism, alteration) whereas carbon isotopes are in the range of ‘primary carbonatites’ (δ13C = –5.7 to –7.1‰). Most of the initial 87Sr/86Sr and 143Nd/144Nd values of the studied carbonatites were not appreciably modified by secondary processes. Their εtSr and εtNd values (20.0 to 25 and 0.7 to –4.5, respectively) indicate enriched mantle sources very different from the ‘depleted’ ones related to many Precambrian carbonatites from North America (0.6 –2.6 Ga) and Africa (0.5 –2.0 Ga). The Early Proterozoic Sr-Nd isotopic signatures of the AdD carbonatites are similar to those of the Early Cretaceous carbonatites from the Paraná basin. The latter carbonatites show a great isotopic variability ranging from Bulk Earth to the related potassic magmatism from Asunción-Sapucai graben in the Eastern Paraguay (K-ASU magmatism: εtSr = 35 to 50 and εtNd = –12 to –20). The very similar isotopic compositions of Precambrian and post-Palaeozoic carbonatites worldwide indicate that the subcontinental mantle variability lasted for long periods of time and indicate a large-scale mantle heterogeneity.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A., Castorina, F., Censi, P., Comin-Chiaramonti, P. and Gomes, C.B. (1999 Geochemical characteristics of Cretaceous carbonatites from Angola. Journal of African Earth Sciences, 29, 735759.CrossRefGoogle Scholar
Alkmin, F.F., Brito Neves, B.B. and Alves, J.A.C. (1993 Arcabouc.o tectonico do Craton do Sao Francisco. Pp. 4562 in: O Craton do Sao Francisco. Salvador (Dominguez, J.M.L. and Misi, A., editors). SBG Niicleo BA-SE, Salvador, Brazil.Google Scholar
Almeida de, F.F.M., Brito Neves, B.B.A. and Dal Re Carneiro, C. (2000 The origin and evolution of the South American Platform. Earth Sciences Reviews, 50, 77111.CrossRefGoogle Scholar
Antonini, P., Piccirillo, E.M., Petrini, R., Civetta, L., D'Antonio, M. and Orsi, G. (1999 Enriched mantle — Dupal signature in the genesis of the Jurassic Ferrar tholeiites from Prince Albert Mountains (Victoria Land, Antarctica). Contributions to Mineralogy and Petrology, 136, 119.CrossRefGoogle Scholar
Bell, K. (1989 Carbonatites: Genesis and Evolution. Unwin Hyman, London.Google Scholar
Bell, K. and Blenkinsop, J. (1987a) Archean depleted mantle: Evidence from Nd and Sr initial isotopic ratios of carbonatites. Geochimica et Cosmochimica Acta, 51, 291298.CrossRefGoogle Scholar
Bell, K. and Blenkinsop, J. (19876 Nd and Sr isotopic compositions of East African carbonatites: implica-tions for mantle heterogeneity. Geology, 15, 99102.2.0.CO;2>CrossRefGoogle Scholar
Bell, K. and Blenkinsop, J. (1989 Neodymium and strontium isotope geochemistry of carbonatites. Pp. 278300 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Bell, K. and Tilton, G.R. (2001 Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42, 19271945.CrossRefGoogle Scholar
Bell, K. and Tilton, G.R. (2002 Probing the mantle: the story from carbonatites. EOS, 83/25, 273277.CrossRefGoogle Scholar
Boynton, W.V. (1984 Geochemistry of the rare earth elements: meteorite studies. Pp. 63114 in: Rare Earth Elements Geochemistry (Henderson, P., editor). Elsevier Science Publishing BV, Amsterdam.CrossRefGoogle Scholar
Castorina, F., Censi, P., Comin-Chiaramonti, P., Piccirillo, E.M., Alcover Neto, A., Gomes, C.B., Almeida, R.T.I., Speziale, S. and Toledo, M.C.M. (1997 Carbonatites from Eastern Paraguay and genetic relationships with potassic magmatism: C, O, Sr and Nd isotopes. Mineralogy and Petrology, 61, 237260.CrossRefGoogle Scholar
Comin-Chiaramonti, P., Cundari, A., Piccirillo, E.M., Gomes, C.B., Castorina, F., Censi, P., De Min, A., Marzoli, A., Speziale, S. and Velazquez, V.F. (1997 Potassic and sodic igneous rocks from Eastern Paraguay: their origin from lithospheric mantle and genetic relationships with the associated Parana flood tholeiites. Journal of Petrology, 38, 495528.CrossRefGoogle Scholar
Comin-Chiaramonti, P., Cundari, A., DeGraff, J.M., Gomes, C.B. and Piccirillo, E.M. (1999 Early Cretaceous-Tertiary magmatism in Eastern Paraguay (western Parana basin): geological, geo-physical and geochemical relationships. Journal of Geodynamics, 28, 375391.CrossRefGoogle Scholar
Comin-Chiaramonti, P., Gomes, C.B., Castorina, F., Censi, P., Antonini, P., Furtado, S., Ruberti, E. and Scheibe, L.F. (2002 Geochemistry and geodynamic implications of the Anitapolis and Lages alkaline-carbonatite complexes, Santa Catarina State, Brazil. Revista Brasileira de Geociencias, 32, 639653.Google Scholar
Dahrauge, J. (2001 The Fir carbonatites a potential tantalum-niobium resource. Exploration and Mining in British Columbia, 2001, 8388.Google Scholar
Dawson, J.B. and Hinton, R.W. (2002 Trace element content and partitioning in carbonatite carbonates and apatite, Phalaborwa, South Africa. IMA 2002, Edinburgh, Abstract 246.Google Scholar
Deines, P. (1989 Stable isotope variations in carbonatites. Pp. 301359 in: Carbonatites: Genesis and Evolution (Bell, K. editor). Unwin Hyman, London.Google Scholar
Dos Santos, C.N. (2001 Micromorfologia, geoquimica e aspectos tecnoldgico da apatita da associacao alcalino-carbonatitica Precambriana de Angico dos Dias (BA). PhD thesis, Instituto de Geociencias, Universidade de Sao Paulo, Brazil.Google Scholar
Eriksson, S.C. (1989 Phalaborwa: a saga of magmatism, metasomatism and miscibility. Pp. 221254 in: Carbonatites: Genesis and Evolution (Bell, K., editor), Unwin Hyman, London.Google Scholar
Faure, G. (1986 Principles of Isotope Geochemistry. John Wiley and Sons, New York.Google Scholar
Giaretta, A. (1994 Sistematica isotopica dello stronzio: determinatione di Sr e Rb in spettrofotometria di assorbimento atomico. Centro di Studio per la Geodinamica Alpina, CNR, Padova, Internal Report, 1, 121.Google Scholar
Gittins, J. (1979 Problems inherent in the application of calcite-dolomite geothermometry to carbonatites. Contributions to Mineralogy and Petrology, 69, 14.CrossRefGoogle Scholar
Govindaraju, K. and Mevelle, G. (1987 Fully auto-mated dissolution and separation methods for inductively coupled plasma atomic emission spectro-metry rock analysis: application to the determination of rare earth elements. Journal of Analytical Atomic Spectrometry, 2, 615621.CrossRefGoogle Scholar
Harmer, R.E. and Gittins, J. (1998 The case for Primari, mantle-derived carbonatite magma. Journal of Petrology, 39, 18951903.CrossRefGoogle Scholar
Hart, S. and Zindler, A. (1989 Constraints on the nature and development of chemical heterogeneities in the mantle. Pp. 261388 in: Mantle Convection (Peltier, W.R., editor). Gordon and Breach Science Publishers S.A., New York.Google Scholar
Hogarth, D.D., Hartree, R., Loop, J. and Solberg, T.N. (1985 Rare-earth element minerals in four carbonatites near Gatineau, Quebec. American Mineralogist, 70, 11351142.Google Scholar
Hornig-Kjarsgaard, B. (1998 Rare earth elements in sovitic carbonatites and their mineral phases. Journal of Petrology, 39, 21052121.CrossRefGoogle Scholar
Huang, Y.N., Hawkesworth, C.J., van Calsteren, P. and McDermott, F. (1995 Geochemical characteristics and origin of the Jacupiranga carbonatites, Brazil. Chemical Geology, 119, 7999.CrossRefGoogle Scholar
Iacumin, M., De Min, A., Piccirillo, E.M. and Bellieni, G. (2003 Source mantle heterogeneity and its role in the genesis of Late Archean-Proterozoic (2.7 — 1.0 Ga) and Mesozoic (200 and 130 Ma) tholeiitic magmatism in the South American platform. Earth Sciences Reviews, 62, 365397.CrossRefGoogle Scholar
Inda, H.A.V. and Barbosa, J.F. (1978 Texto explicativo para mapa geologico do Estado de Bahia, escala 1:1.000.000. Publ. Seer. Minas Energia, Salvador, Brazil.Google Scholar
Lapin, A.V. and Ploshko, V.V. (1999 Carbonatitos lineares de cinturoes movies: uma sintese. Revista Brasileira de Geociencias, 29, 483490.CrossRefGoogle Scholar
Leite, C.M.M. and Santos, R.A. (1994 Tectonica e estrutura da regiao de Campo Alegre de Lourdes, NNW do Estado da Bahia. Congreso Brdsileiro do Geologia, 38, Camboriu. Resumos Expandidos, 1, 272274.Google Scholar
Ludwig, K.R. (1991 ISOPLOT: a plotting and regression program for radiogenic-isotope data. US Department of the Interior Geological Survey, Open File, Report, 91 -445.CrossRefGoogle Scholar
Mascarenhas, J.F., Pedreira, A.J., Misi, A., Motta, A.C. and da Silva Sa, J.H. (1984 Provincia Sao Francisco. Pp. 46122 in O Pre-Cambriano do Brasil (de Almeida, F.M.F. and Hasui, Y., editors). Editora Edgard Bliicher Ltda., Sao Paulo.Google Scholar
Nelson, D.R., Chiva, A.R., Chappell, B.W. and McCulloch, M.T. (1988 Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52, 117.CrossRefGoogle Scholar
Pearce, N.J.G. and Leng, M.J. (1996 The origin of carbonatites and related rocks from the Igaliko Dyke Swarm, Gardar Province, South Greenland: field, geochemical and C-O-Sr-Nd isotope evidence. Lithos, 39, 2140.CrossRefGoogle Scholar
Puustinen, K. (1971 Geology of the Siilinjarvi Carbonatite Complex, Eastern Finland. Geological Survey of Finland, Bulletin, 249, 185.Google Scholar
Roden, M.F., Murthy, R.V. and Gaspar, J.C. (1985 Sr and Nd isotopic composition of the Jacupiranga carbonatites. Journal of Geology, 93, 212220.CrossRefGoogle Scholar
Roeder, P.L. and Emslie, R.F. (1970 Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275289.CrossRefGoogle Scholar
Rosa, M.L.S., Conceicao, H., Conceiqao, R.V., Rios, D.C., Nardi, L.V.S., Martin, H., Oberli, F., Meier, M., Scheller, T., Macambira, M.J.B., McReath, I., Pereira Santos, C.G., Barreto Santos, E., Paim, M.M. and Leahy, G.A.S. (1999 Isotopic signature of the Paleoproterozoic potassic-ultrapotassic syenites from Bahia State (Brazil). II South American Symposium on Isotope Geology, Cordoba, Argentina, Adas, 272275.Google Scholar
Rosa, M.L.S., Conceicao, H., Oberli, F., Meier, M., Martin, H., Macambira, M.J.B., Barreto Santos, B., Paim, M.M., Leahy, G.A.S. and Leal, L.R.B. (2000 Geochronology (U-Pb/Pb-Pb) and isotopic signature (Rb-Sr/Sm-Nd) of the Paleoproterozoic Guanambi batholith, southwest Bahia State (NE Brazil). Revista Brasileira de Geociencias, 30, 6265.CrossRefGoogle Scholar
Ruberti, E., Castorina, F., Censi, P., Comin-Chiaramonti, P., Gomes, C.B., Antonini, P. and Andrade, F.R.D. (2002 The geochemistry of the Barra do Itapirapua carbonatite (Ponta Grossa Arch, Brazil): a multiple stockwork. Journal of South American Earth Sciences, 15, 215228.CrossRefGoogle Scholar
Schobbenhaus, C., de Almeida Campos, D., Ruy Derze, G. and Asmus, H.E. (1984 Geologia do Brasil: Texto explicativo do Mapa Geologica do Brasil e da Area Ocednica Adjacente incluindo Depositos Minerais, Escala 1:2,500,000. Divisao de Geologiae Mineralogia - DNPM, Brasilia, Brazil.Google Scholar
Silva, A.B., Liberal, G.S., Issa Filho, A., Rodrigues, C.S. and Riffel, B.F. (1987 Deposito de fosfato em carbonatite pre-cambriano Angico dos Dias — BA. Sociedade Brasilia de Geologia, Niicleo Bahia, Salvador, Brazil (inedito).Google Scholar
Silva, A.B., Liberal, G.S., Grossi Sad, J.H., Issa Filho, A., Rodrigues, C.S. and Riffel, B.F. (1988 Geologia e petrologia do complexo Angico dos Dias (Bahia, Brasil), uma associaqao carbonatitica Precambriana. Geochimica Brasiliensis, 2, 81108.Google Scholar
Smithies, R.H. and Marsh, J.S. (1998 The Marinkas Quellen carbonatite complex, southern Namibia: carbonatite magmatism with uncontaminated de-pleted mantle signature in a continental setting. Chemical Geology, 148, 201212.CrossRefGoogle Scholar
Spencer, K.J. and Lindsley, D.H. (1981 A solution model for coexisting iron-titanium oxides. American Mineralogist, 66, 11891201.Google Scholar
Sun, S.S. and McDonough, W.F. (1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. Pp. 315342 in: Magmatism in the Ocean Basins (Saunders, A.D. and Norry, M.J., editors). Special Publication 42, Geological Society, London.Google Scholar
Taylor, H.P., Jr., Frechen, J. and Degens, E.T. (1967 Oxygen and carbon isotope studies of carbonatites from Laacher See district, West Germany and Alno district, Sweden. Geochimica et Cosmochimica Ada, 31,407430.CrossRefGoogle Scholar
Thompson, R.N., Smith, P.M., Gibson, S.A., Mattey, D.P. and DicMn, A.P. (2002 Ankerite carbonatite from Swartbooisdrif, Namibia: the first evidence for magmatic ferrocarbonatite. Contributions to Mineralogy and Petrology, 143, 377395.CrossRefGoogle Scholar
Tilton, G.R. and Bell, K. (1994 Sr-Nd-Pb isotope relationships in Late Archean carbonatites and alkaline complexes: Applications to the geochemical evolution of Archean mantle. Geochimica et Cosmochimica Acta, 58, 31453154.CrossRefGoogle Scholar
Trompette, R. (1994 Geology of Western Gondwana (2000—500 Ma) Pan-African-Brasiliano aggregation of South America and Africa. Balkema, A.A., Rotterdam.Google Scholar
Veizer, J. (1983 Trace elements and isotopes in sedimentary carbonates. Pp. 265300 in: Carbonates: Mineralogy and Chemistry (Reeder, RJ., editor). Reviews in Mineralogy, 11. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Veizer, J., Plumb, K.A., Clayton, R.N., Hinton, R.W. and Grotzinger, J.P. (1992 Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater. Geochimica et Cosmochimica Acta, 56, 24872501.CrossRefGoogle Scholar
Villeneuve, M.E. and Relf, C. (1998 Tectonic setting of 2.6 Ga carbonatites in the Slave Province, NW Canada. Journal of Petrology, 39, 19751986.CrossRefGoogle Scholar
Wildeman, T.R. and Haskin, L.A. (1973 Rare earths in Precambrian sediments. Geochimica et Cosmochimica Acta, 37, 419438.CrossRefGoogle Scholar
Woolley, A.R. and Kempe, D.R.C. (1989 Carbonatites: nomenclature, average chemical compositions, and element distribution. Pp. 114 in: Carbonatites: Genesis and Evolution (K. Bell, editor). Unwin Hyman, London.Google Scholar
Yamamoto, E. (2001 Petrologia e geoquimica do Complexo carbonatitico de Angico dos Dias, Estado da Bahia. Graduate Thesis, Instituto de Geociencias, Universiade de Sao Paulo, Brazil.Google Scholar
Zindler, A. and Hart, S.R. (1986 Chemical geody-namics. Annual Review of Earth and Planetary Sciences, 14, 493523.CrossRefGoogle Scholar