Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:35:13.307Z Has data issue: false hasContentIssue false

Dyrnaesite-(La) a new hyperagpaitic mineral from the Ilímaussaq alkaline complex, South Greenland

Published online by Cambridge University Press:  02 January 2018

Jørn G. Rønsbo*
Affiliation:
Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
Tonči Balić-Žunić
Affiliation:
Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Copenhagen K, Denmark
Ole V. Petersen
Affiliation:
Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350, Copenhagen K, Denmark
*

Abstract

The new mineral, dyrnaesite-(La), is found in the Ilímaussaq alkaline complex, South Greenland. The holotype material originates from an arfvedsonite lujavrite sheet as an accessory mineral. Dyrnaesite-(La) is pale yellowish green, with no cleavage and an irregular fracture. Density is 3.68(2)/3.682 g/cm3 (measured/ calculated). It is biaxial, negative, 2Vα = 47(1)/48 (measured/calculated); α = 1.6226(5), β = 1.6852(10), γ = 1.6982(2); X = c, Y = a, Z = b. The average values of microprobe analyses are (wt.%) P2O5 37.17, SiO2 0.15, CaO 0.90, Na2O 20.06, La2O3 16.44, CeO2 20.23, Pr2O3 1.40, Nd2O3 3.47, Sm2O3 0.24, Dy2O3 0.06, Y2O3 0.06.

The crystal structure was solved from single-crystal X-ray diffraction data. Dyrnaesite-(La) is orthorhombic, Pnma; a = 18.4662(7) Å, b = 16.0106(5) Å, c = 7.0274(2) Å, V = 2077.7(2) Å3, Z = 4. The structural formula calculated from the diffraction data and microprobe analysis is Na7.89(Ce0.94Ca0.06)∑1.00(Ca0.12La1.14Ce0.40Pr0.10Nd0.24)∑2.00(PO4)6, the simplified formula is Na8Ce4+REE2(PO4)6. The crystal structure is related closely to that of vitusite-(Ce), but is distinct from it in several aspects. The five strongest lines of the powder X-ray diffraction pattern are (d Å, (I %), (hkl)); 6.57 (100) (101), 4.62 (40) (301, 230, 400), 3.50 (40) (331), 2.80 (86) (232, 402), 2.67 (54) (060,630).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balic-Zunic, T. (2017) The crystal structure of the new mineral dyrnaesite-(La), Na8CeIVREE2(PO4)6 . Mineralogical Magazine, 81, 195204.CrossRefGoogle Scholar
Bøggild, O.B. (1903) Erikite, anew mineral. Meddelelser om Grønland, 29, 93121.Google Scholar
Buchwald, Y and Sørensen, H. (1961) An autoradio- graphic examination of rocks and minerals from the Ilímaussaq batholite, South West Greenland. Meddelelser om Grønland, 162, 135.Google Scholar
Danø, M. and Sørensen, H. (1959) An examination of some rare minerals from nepheline syenites of South West Greenland. Meddelelser om Grønland, 162(5), 35 pp.Google Scholar
Engell, J.E. (1973) A closed system crystal-fractionation model for the agpaitic Ilímaussaq intrusion, South Greenland with special reference to the lujavrites. Bulletin of the Geological Society of Denmark, 22, 334362.Google Scholar
Göb, S., Wenzel, T., Bau, M., Jacob, D.E., Loges, A. and Markl, G. (2011) The redistribution of rare-earth elements in secondary minerals of hydrothermal veins, Schwarzwald, Southwestern Germany. The Canadian Mineralogist, 49, 13051333.CrossRefGoogle Scholar
Mazzi, F. and Ungaretti, L. (1994) The crystal structure of vitusite from Ilímaussaq (South Greenland) N a3REE (PO4)2 . Neues Jahrbuch für Mineralogie -Monatshefte, 2, 4966.Google Scholar
Medenbach, O. (1985) A new microrefractometer spindle-stage and its application. Fortschritte der Mineralogie, 63, 111133.Google Scholar
Pekov, LY, Chukanov, N.Y, Ronsbo, J.G. and Sørensen, H. (1997) Erikite - a pseudomorph after vitusite-(Ce). Neues Jahrbuch für Mineralogie - Monatshefte, 3, 97112.CrossRefGoogle Scholar
Rønsbo, J.G. (1989) Coupled substitution involving REEs and Na and Si in apatites in alkaline rocks from the Ilímaussaq intrusion, South Greenland and the petrological implications. American Mineralogist, 74, 896901.Google Scholar
Rønsbo, J.G., Khomyakov, A.H., Semenov, E.I., Voronkov, A.A. and Garanin, V.K. (1979) Vitusite-(Ce) - a new phosphate of sodium and rare earths from Lovozero alkaline massif, Kola and the Ilímaussaq alkaline intrusion, South Greenland. Neues Jarhbuch für Mineralogishe - Abhandlungen, 137, 4253.Google Scholar
Sørensen, H. (1962) On the occurrence of steenstrupine in the Ilímaussaq massif, Southwest Greenland. Meddelelser om Grønland, 167(1), 1244.Google Scholar
Sørensen, H. (2006) The Ilímaussaq alkaline complex, South Greenland - an overview of 200 years of research and an outlook. Meddelelser om Grønland, Geoscience, 45, 70 pp.Google Scholar
Sørensen, H. and Larsen, L.M. (2001) The hyperagpaitic stage in the evolution of the Ilímaussaq alkaline complex, South Greenland. Pp. 8394 in: The Ilímaussaq Alkaline Complex, South Greenland, Status of Mineralogical Research with New Results. (H. Sørensen, editor). Geology of Greenland Survey Bulletin, 190. Geological Survey of Denmark and Greenland, Copenhagen.Google Scholar
Sørensen, H., Bohse, H. and Bailey, J.C. (2006) The origin and mode of emplacement of lujavrites from the Ilímaussaq alkaline complex, South Greenland. Lithos, 91, 286300.CrossRefGoogle Scholar
Upton, B.G.J. (2013) Tectonic-magmatic evolution of the younger Garder southern rift, South Greenland. Geological Survey of Denmark and Greenland, Bulletin, 38, 426 pp.CrossRefGoogle Scholar