Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T04:30:46.219Z Has data issue: false hasContentIssue false

The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups

Published online by Cambridge University Press:  05 July 2018

A. Pieczka*
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH-University of Science and Technology, Mickiewicza 30, Kraków, 30-059, Poland
R. J. Evans
Affiliation:
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, V6T IZ4, Canada
E. S. Grew
Affiliation:
School of Earth and Climate Sciences, University of Maine, Bryand Global Science Center, Orono, Maine, 04469- 5790, USA
L. A. Groat
Affiliation:
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, V6T IZ4, Canada
C. Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, MS 170-25, Pasadena, California, 91125-2500, USA
G. R. Rossman
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, MS 170-25, Pasadena, California, 91125-2500, USA
*

Abstract

Although the distinction between magnesiodumortieite and dumortierite, i.e. Mg vs. Al dominance at the partially vacant octahedral Al1 site, had met current criteria of the IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) for distinguishing mineral species, the distinction between holtite and dumortierite had not, since Al and Si are dominant over Ta and (Sb, As) at the Al1 and two Si sites, respectively, in both minerals. Recent studies have revealed extensive solid solution between Al, Ti, Ta and Nb at Al1 and between Si, As and Sb at the two Si sites or nearly coincident (As, Sb) sites in dumortierite and holtite, further blurring the distinction between the two minerals.

This situation necessitated revision in the nomenclature of the dumortierite group. The newly constituted dumortierite supergroup, space group Pnma (no. 62), comprises two groups and six minerals, one of which is the first member of a potential third group, all isostructural with dumortierite. The supergroup, which has been approved by the CNMNC, is based on more specific end-member compositions for dumortierite and holtite, in which occupancy of the Al1 site is critical.

(1) Dumortierite group, with Al1 = Al3+, Mg2+ and ☐, where ☐ denotes cation vacancy. Charge balance is provided by OH substitution for O at the O2, O7 and O10 sites. In addition to dumortierite, endmember composition AlAl6BSi3O18, and magnesiodumortierite, endmember composition MgAl6BSi3O17(OH), plus three endmembers, “hydroxydumortierite”, ☐Al6BSi3O15(OH)3 and two Mg-Ti analogues of dumortierite, (Mg0.5Ti0.5)Al6BSi3O18 and (Mg0.5Ti0.5)Mg2Al4BSi3O16(OH)2, none of which correspond to mineral species. Three more hypothetical endmembers are derived by homovalent substitutions of Fe3+ for Al and Fe2+ for Mg.

(2) Holtite group, with Al1 = Ta5+, Nb5+, Ti4+ and ☐. In contrast to the dumortierite group, vacancies serve not only to balance the extra charge introduced by the incorporation of pentavalent and quadrivalent cations for trivalent cations at Al1, but also to reduce repulsion between the highly charged cations. This group includes holtite, endmember composition (Ta0.60.4)Al6BSi3O18, nioboholite (2012-68), endmember composition (Nb0.60.4)Al6BSi3O18, and titanoholtite (2012-69), endmember composition (Ti0.750.25)Al6BSi3O18.

(3) Szklaryite (2012-70) with Al1 = ☐ and an endmember formula ☐Al6BAs3+3O15. Vacancies at Al1 are caused by loss of O at O2 and O7, which coordinate the Al1 with the Si sites, due to replacement of Si4+ by As3+ and Sb3+, and thus this mineral does not belong in either the dumortierite or the holtite group. Although szklaryite is distinguished by the mechanism introducing vacancies at the Al1 site, the primary criterion for identifying it is based on occupancy of the Si/As, Sb sites: (As3+ + Sb3+) > Si4+ consistent with the dominant-valency rule. A Sb3+ analogue to szklaryite is possible.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, V.D., Griffen, D.T. and Martin, J.T. (1986) Crystal chemistry of some Fe- and Ti-poor dumortierites. American Mineralogist, 71, 786794 Google Scholar
Applin, K.R. and Hicks, B.D. (1987) Fibers of dumortierite in quartz. American Mineralogist, 72, 170172 Google Scholar
Bertrand, E. (1880) Sur un minéral bleu de Chaponost, pre`s Lyon. Sur un autre minéral bleu du Chili. Bulletin de la Société Franc¸aise de Minéralogie, 3, 171172 CrossRefGoogle Scholar
Borghi, A., Cossio, R., Fiori, L., Olmi, F. and Vaggelli, G. (2004) Chemical determination of colored zoned minerals in ‘natural stones’ by EDS/WDS electron microprobe: an example from dumortierite quartzites. X-ray Spectrometry, 33, 2127 CrossRefGoogle Scholar
Cempírek, J. and Novák, M. (2005) A green dumortierite from Kutná Hora region, Czech Republic: spectroscopic and structural study. Crystallization Processes in Granitic Pegmatites. Elba, Italy, 45 Google Scholar
Cempírek, J., Novák, M., Dolníček, Z., Kotková, J. and Škoda, R. (2010) Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic. American Mineralogist, 95, 15331547 CrossRefGoogle Scholar
Chopin, C., Klaska, R., Medenbach, O. and Dron, D. (1986) Ellenbergerite, a new high-pressure Mg–Al–(Ti,Zr)-silicate with a novel structure based on face-sharing octahedra. Contributions to Mineralogy and Petrology, 92, 316321 CrossRefGoogle Scholar
Chopin, C., Ferraris, G., Ivaldi, G., Schertl, H.-P., Schreyer, W., Compagnoni, R., Davidson, C. and Davis, A.M. (1995) Magnesiodumortierite, a new mineral from very-high-pressure rocks (western Alps). II. Crystal chemistry and petrological significance. European Journal of Mineralogy, 7, 525535 CrossRefGoogle Scholar
Claringbull, G.F. and Hey, M.H. (1958) New data for dumortierite. Mineralogical Magazine, 31, 901907 CrossRefGoogle Scholar
Evans, R.J. and Groat, L.A. (2012) Structure and topology of dumortierite and dumortierite-like materials. The Canadian Mineralogist, 50, 11971231 CrossRefGoogle Scholar
Evans, R.J., Fyfe, C.A., Groat, L.A. and Lam, A.E. (2012) MAS NMR measurements and ab initio calculations of the 29Si chemical shifts in dumortierite and holtite. American Mineralogist, 97, 329340 CrossRefGoogle Scholar
Farges, F., Galoisy, L., Balan, E., Fuchs, Y. and Linare`s, J. (2004) Structure and color of the Jack Creek dumortierite (Montana,, USA) using spectroscopic approaches. Mitteilungen der O ¨ sterreichischen Mineralogischen Gesellschaft, 149, 29.Google Scholar
Ferraris, G., Ivaldi, G. and Chopin, C. (1995) Magnesiodumortierite, a new mineral from veryhigh- pressure rocks (Western Alps). Part I: Crystal structure. European Journal of Mineralogy, 7, 167174 CrossRefGoogle Scholar
Fleet, M.E. and Muthupari, S. (2000) Boron K-edge XANES of borate and borosilicate minerals. American Mineralogist, 85, 10091021 CrossRefGoogle Scholar
Fuchs, Y., Balan, E., Farges, F., Linare`s, J. and Horn, A. (2004) Fe and Ti in dumortierite: A FTIR,, EPR, Mössbauer and Fe/Ti K-edge XANES study. Lithos, 73 (Supplement), S39.Google Scholar
Fuchs, Y., Ertl, A., Hughes, J. M., Prowatke, S., Brandstaetter, F. and Schuster, R. (2005) Dumortierite from the Gföhl unit: Lower Austria; chemistry, structure, and infra-red spectroscopy. European Journal of Mineralogy, 17, 173183 CrossRefGoogle Scholar
Galliski, M.A., Márques-Zavalía, M.F., Lira, R., Cempírek, J. and Škoda, R. (2012) Mineralogy and origin of the dumortierite-bearing pegmatites of Virorco, San Luis, Argentina. The Canadian Mineralogist, 50, 873894 CrossRefGoogle Scholar
Garvie, L.A.J., Craven, A.J. and Brydson, R. (1995) Parallel electron energy-loss spectroscopy (PEELS) study of B in minerals: The electron energy-loss near-edge structure (ELNES) of the B K edge. American Mineralogist, 80, 11321144 CrossRefGoogle Scholar
Golovastikov, N.I. (1965) The crystal structure of dumortierite. Doklady Akademii Nauk SSSR, 162, 1284–1287 (in Russian, English translation, Soviet Physics Doklady, 10, 493495 Google Scholar
Gonnard, M.F. (1881) Note sur l’existence d’une espe`ce minérale nouvelle, la dumortiérite dans le gneiss de Beaunan, au-dessus des anciens aqueducs galloromains de la vallée de l’Izeron (Rhoˆ ne). Bulletin de la Société Franc¸aise de Minéralogie, 4, 25 CrossRefGoogle Scholar
Goreva, J.S. and Rossman, G.R. (2000) A blue variety of rose quartz. Geological Society of America Abstracts with Programs, 32(7), A439 – A-440.Google Scholar
Goreva, J.S., Ma, C. and Rossman, G.R. (2001) Fibrous nanoinclusions in massive rose quartz: The source of rose coloration. American Mineralogist, 86, 466472 CrossRefGoogle Scholar
Grew, E.S. (2002) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. Pp. 387502 in: Boron: Mineralogy, Petrology, and Geochemistry (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Grew, E.S., Locock, A.J., Mills, S.J. Galuskina, I.O., Galuskin, E.V. and Hå lenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811 CrossRefGoogle Scholar
Groat, L.A., Grew, E.S., Ercit, T.S. and Pieczka, A. (2001): The crystal chemistry of dumortierite and holtite, aluminoborosilicates with heavy elements. Geological Society of America Abstracts with Programs, 33(6), A-383. Groat, L.A., Grew, E. S., Evans, R.J., Pieczka, A. and Ercit, T.S. (2009) The crystal chemistry of holtite. Mineralogical Magazine, 73, 10331050 CrossRefGoogle Scholar
Groat, L.A., Evans, R.J., Grew, E.S. and Pieczka, A. (2012) Crystal chemistry of As and Sb-bearing dumortierite. The Canadian Mineralogist, 50, 855872 CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728 CrossRefGoogle Scholar
Hawthorne, F.C. (2002) The use of end-member chargearrangements in defining new mineral species and heterovalent substitutions in complex minerals. The Canadian Mineralogist, 40, 699710 CrossRefGoogle Scholar
Hoskins, B.F., Mumme, W.G. and Pryce, M.W. (1989) Holtite, (Si2.25Sb0.75)B[(Al6(Al0.43Ta0.270.30) O15(O,OH)2.25]: crystal structure and crystal chemistry. Mineralogical Magazine, 53, 457463 CrossRefGoogle Scholar
Huijsmans, J.P.P., Barton, M. and van Bergen, M.J. (1982) A pegmatite containing Fe-rich grandidierite, Ti-rich dumortierite and tourmaline from the Precambrian, high-grade metamorphic complex of Rogaland,, S. W. Norway. Neues Jahrbuch für Mineralogie Abhandlungen, 143, 249261 Google Scholar
Kazantsev, S.S., Pushcharovsky, D.Yu., Pasero, M., Merlino, S., Zubkova, N.V., Kabalov, Yu.K. and Voloshin, A.V. (2005) Crystal structure of holtite I. Crystallography Reports, 50, 4247 CrossRefGoogle Scholar
Kazantsev, S.S., Zubkova, N.V. and Voloshin, A.V. (2006) Refinement of composition and structure of holtite I. Crystallography Reports, 51, 412413 CrossRefGoogle Scholar
Keller, P. (2001) Ekatite, (Fe3+,Fe2+,Zn)12 (OH)6O[AsO3]6[AsO3,HOSiO3]2, a new mineral from Tsumeb, Namibia, and its crystal structure. European Journal of Mineralogy, 13, 769777 CrossRefGoogle Scholar
Kihle, J. (1989) Polymetamorphic evolution of cordierite- bearing metapelites of the Bamble-sector, Southern Norway. Unpublished Candidate of Science Thesis, Department of Geology, University of Oslo, 3 vol, 360 p (in Norwegian).Google Scholar
Ma, C., Goreva, J.S. and Rossman, G.R. (2002) Fibrous nanoinclusions in massive rose quartz: HRTEM and AEM investigations. American Mineralogist, 87, 269276 CrossRefGoogle Scholar
Moore, P.B. and Araki, T. (1978) Dumortierite, Si3B[Al6.750.25O17.25(OH)0.75]: a detailed structure analysis. Neues Jahrbuch fü r Mineralogie Abhandlungen, 132, 231241 Google Scholar
Ono, A. (1981) Synthesis of dumortierite in the system Al2O3-SiO2-B2O3-H2O. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 76(1), 2125 CrossRefGoogle Scholar
Pieczka, A. (2010) Primary Nb-Ta minerals in the Szklary pegmatite, Poland: new insights into controls of crystal chemistry and crystallization sequences. American Mineralogist, 95, 14781492 CrossRefGoogle Scholar
Pieczka, A. and Marszałek, M. (1996) Holtite – the first occurrence in Poland. Mineralogia Polonica, 27, 38 Google Scholar
Pieczka, A., Grew, E.S., Groat, L.A. and Evans, R.J. (2011) Holtite and dumortierite from the Szklary Pegmatite, Lower Silesia, Poland. Mineralogical Magazine, 75, 303315 CrossRefGoogle Scholar
Pieczka, A., Evans, R.J., Grew, E.S., Groat, L.A., Ma, C. and Rossman, G.R. (2013) The dumortierite supergroup. II. Three new minerals from the Szklary pegmatite , SW Poland : Nioboholtite , (Nb0.6□0. 4 ) Al6BSi3O18 , titanoholtite , (Ti0.750.25)Al6BSi3O18, and szklaryite, □Al6BAs3+ 3 O15 Mineralogical Magazine, 77, 28412856 Google Scholar
Platonov, A.N., Langer, K., Chopin, C., Andrut, M. and Taran, M.N. (2000) Fe2+-Ti4+ charge-transfer in dumortierite. European Journal of Mineralogy, 12, 521528 CrossRefGoogle Scholar
Pryce, M.W. (1971) Holtite: a new mineral allied to dumortierite. Mineralogical Magazine, 38, 2125 CrossRefGoogle Scholar
Raade, G., Rømming, C. and Medenbach, O. (1998) Carbonate-substituted phosphoellenbergerite from Modum, Norway: description and crystal structure. Mineralogy and Petrology, 62, 89101 CrossRefGoogle Scholar
Schaller, W.T. (1905) Dumortierite. In Contributions to Mineralogy from the U. S. Geological Survey, U.S. Geological Survey Bulletin, 262, 91–120 (A portion of this paper was published in American Journal of Science, 169, 211224.Google Scholar
Vaggelli, G., Olmi, F., Massi, M., Giuntini, L., Fedi, M., Fiori, L., Cossio, R. and Borghi, A. (2004) Chemical investigation of colored minerals in natural stones of commercial interest. Microchimica Acta, 145, 249254 Google Scholar
Visser, D. and Senior, A. (1991) Mg-rich dumortierite in cordierite-orthoamphibole-bearing rocks from the high-grade Bamble Sector, south Norway. Mineralogical Magazine, 55, 563577 CrossRefGoogle Scholar
Voloshin, A.V. and Pakhomovskiy, Ya.A. (1988) Mineralogy of Tantalum and Niobium in Rare- Metal Pegmatites. Nauka, Leningrad (in Russian).Google Scholar
Voloshin, A.V., Gordienko, V.V., Gel’man, Ye.M., Zorina, M.L., Yelina, N.A., Kul’chitskaya, Ye.A., Men’shikov, Yu.P., Polezhayeva, L.I., Ryzhova, R.I., Sokolov, P.B. and Utochkina, G.I. (1977) Holtite (first find in the USSR) and its relationship with other tantalum minerals in rare-metal pegmatites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 106(3), 337347 (in Russian).Google Scholar
Voloshin, A.V., Pakhomovskiy, Ya.A. and Zalkind, O.A. (1987) An investigation of the chemical composition and IR-spectroscopy of holtite. In Mineral’nyye Assotsiatsiii Mineraly Magmaticheskikh Kompleksov Kol’skogo Poluostrova, pp. 1434 Kol’skiy Filial Akademii Nauk SSSR, Apatity (in Russian).Google Scholar
Vrána, S. (1979) A polymetamorphic assemblage of grandidierite, kornerupine, Ti-rich dumortierite, tourmaline, sillimanite, and garnet. Neues Jahrbuch für Mineralogie Monatshefte, 1979(1), 2233 Google Scholar
Werding, G. and Schreyer, W. (1990) Synthetic dumortierite: its PTX-dependent compositional variations in the system Al2O3-B2O3-SiO2-H2O. Contributions to Mineralogy and Petrology, 105, 1124 CrossRefGoogle Scholar
Willner, A.P. and Schreyer, W. (1991) A dumortieritetopaz- white mica fels from the peraluminous metamorphic suite of Bushmanland (South Africa). Neues Jahrbuch für Mineralogie Monatshefte, 1991(5), 223240 Google Scholar