Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T17:54:09.548Z Has data issue: false hasContentIssue false

Distribution of gallium between phenocrysts and melt in peralkaline salic volcanic rocks, Kenya Rift Valley

Published online by Cambridge University Press:  05 July 2018

R. Macdonald
Affiliation:
IMGiP Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland Environment Centre, Lancaster University, Lancaster LA14YQ, UK
N. W. Rogers
Affiliation:
Department of Earth Sciences, CEPSAR, The Open University, Milton Keynes MK7 6AA, UK
B. Bagiński
Affiliation:
IMGiP Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
P. Dzierżanowski
Affiliation:
IMGiP Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland

Abstract

Gallium abundances, determined by laser ablation-inductively coupled plasma-mass spectrometry, are presented for phenocrysts and glassy matrices from a metaluminous trachyte and five peralkaline rhyolites from the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Abundances in the glasses range from 28.9 to 33.3 ppm, comparable with peralkaline rhyolites elsewhere. Phenocryst Ga abundances (in ppm) are: sanidine 31.5–45.3; fayalite 0.02–0.22; hedenbergite 3.3–6.3; amphibole 12; biotite 72; ilmenite 0.56–0.72; titanomagnetite 32; chevkinite-(Ce) 364. The mafic phases and chevkinite-(Ce) are enriched in Ga relative to Al, whereas Ga/Al ratios in sanidine are smaller than in coexisting glass. Apparent partition coefficients range from <0.01 in fayalite to 12 in chevkinite-(Ce). Coefficients for hedenbergite, ilmenite and titanomagnetite decrease as melts become peralkaline. The sharp increase in Ga/Al in the more fractionated members of alkaline magmatic suites probably results from alkali feldspar-dominated fractionation. Case studies are presented to show that the Ga/Al ratio may be a sensitive indicator of such petrogenetic processes as magma mixing, interaction of melts with F-rich volatile phases, mineral accumulation and volatile-induced crustal anatexis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D.K. and Macdonald, R. (1970) Petrochemical variations among mildly peralkaline (comendite) obsidians from the oceans and continents. Contributions to Mineralogy and Petrology, 28, 340351.CrossRefGoogle Scholar
Baker, D.R. and Vaillancourt, J. (1995) The low viscosities of F + H2O-bearing granitic melts and implications for melt extraction and transport. Earth and Planetary Science Letters, 132, 199211.CrossRefGoogle Scholar
Black, S., Macdonald, R. and Kelly, M.R. (1997) Crustal origin for peralkaline rhyolites from Kenya: evidence from U-series disequilibria and Th-isotopes. Journal of Petrology, 39, 9951008.Google Scholar
Clarke, M.C.G., Woodhall, D.G., Allen, D. and Darling, G. (1990) Geological, volcanological and hydrogeological controls on the occurrence of geothermal activity in the area surrounding Lake Naivasha, Kenya. Ministry of Kenya Report, Nairobi.Google Scholar
Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189200.CrossRefGoogle Scholar
Davies, G.R. and Macdonald, R. (1987) Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28, 10091031.CrossRefGoogle Scholar
Dingwell, D.B., Holtz, F. and Behrens, H. (1997) The solubility of H2O in peralkaline and peraluminous granitic melts. American Mineralogist, 82, 434437.CrossRefGoogle Scholar
Dingwell, D.B., Hess, K.-U. and Romano, C. (1998) Extremely fluid behaviour of hydrous peralkaline rhyolites. Earth and Planetary Science Letters, 158, 3138.CrossRefGoogle Scholar
Ewart, A. and Griffin, W.L. (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117, 251284.CrossRefGoogle Scholar
Flude, S., Burgess, R. and McGarvie, D.W. (2008) Silicic volcanism at Ljísufjöll, Iceland: Insights into evolution and eruptive history from Ar-Ar dating. Journal of Volcanology and Geothermal Research, 169, 154175.CrossRefGoogle Scholar
Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L. and Hu, S. (2002) Determination of forty two major and trace elements in USGS and NIST SRM glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 26, 181196.CrossRefGoogle Scholar
Gibson, I.L. (1972) The chemistry and petrogenesis of a suite of pantellerites from the Ethiopian Rift. Journal of Petrology, 13, 3144.Google Scholar
Goldschmidt, V.M. (1954) Geochemistry. Clarendon Press, Oxford, UK, 730 pp.Google Scholar
Goldschmidt, V.M. and Peters, C. (1931) ZurGeochimie des Galliums. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1, 165183.Google Scholar
Goldsmith, J.R. (1950) Gallium and germanium substitutions in synthetic feldspars. Journal of Geology, 58, 518536.CrossRefGoogle Scholar
Haapala, I. (1997) Magmatic and postmagmatic processes in tin-mineralised granites: topaz-bearing leucogranite in the Eurajoki rapakivi granite stock, Finland. Journal of Petrology, 38, 16451659.CrossRefGoogle Scholar
Heumann, A. and Davies, G.R. (2002) U-Th disequilibrium and Rb-Sr age constraints on the magmatic evolution of peralkaline rhyolites from Kenya. Journal of Petrology, 43, 557577.CrossRefGoogle Scholar
Jochum, K.P., Willbold, M., Raczek, I., Stoll, B. and Herwig, K (2005) Chemical characterization of the USGS reference glasses GSA-1G, GSC-1G, GSD-1C, GSE-1G, BCR-2G, BHVO-2G and BIR-G using EMPA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards and Geoanalytical Research, 29, 285302.CrossRefGoogle Scholar
Kelly, P.J., Kyle, P.R., Dunbar, N.W. and Sims, K.W.W. (2008) Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972–2004 and comparison with older lavas. Journal of Volcanology and Geothermal Research, 177, 589605.CrossRefGoogle Scholar
Le Roex, A.P. and Erlank, A.J. (1982) Quantitative evaluation of fractional crystallization in Bouvet Island lavas. Journal of Volcanology and Geothermal Research, 13, 309338.CrossRefGoogle Scholar
Li, G., Yang, G., Ma, Z., Shi, N., Xiong, M., Fan, H. and Sheng, G. (2005) Crystal structure of natural non-metamict Ti- and Fe2+-rich chevkinite-(Ce). Acta Geologica Sinica, 79, 325331.Google Scholar
Macdonald, R., Davies, G.R., Bliss, C.M., Leat, P.T., Bailey, D.K. and Smith, R.L. (1987) Geochemistry of high-silica rhyolites, Naivasha, Kenya rift valley. Journal of Petrology, 28, 9791008.CrossRefGoogle Scholar
Macdonald, R., Rogers, N.W. and Tindle, A.G. (2007) Distribution of germanium between phenoerysts and melt in peralkaline rhyolites from the Kenya Rift Valley. Mineralogical Magazine, 71, 703713.CrossRefGoogle Scholar
Macdonald, R., Belkin, H.E., Fitton, J.G., Rogers, N.W., Nejbert, K, Tindle, A.G. and Marshall, A.S. (2008 a) The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young peralkaline rhyolite suite, the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 49, 15151547.CrossRefGoogle Scholar
Macdonald, R., Bagiński, B., Belkin, H.E., Dzierżanowski, P. and Jeżak, L. (2008 b) REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. Mineralogical Magazine, 72, 11471161.CrossRefGoogle Scholar
Macdonald, R., Bagiński, B., Upton, B.G.J., Dzierżanowski, P. and Marshall-Roberts, W. (2009) The Palaeogene Eskdalemuir dyke, Scotland: long-distance lateral transport of rhyolitic magma in a mixed-magma intrusion. Mineralogical Magazine, 73, 285300.CrossRefGoogle Scholar
Mahood, G.A. (1981) Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México. Contributions to Mineralogy and Petrology, 77, 129149.CrossRefGoogle Scholar
Mahood, G.A. and Hildreth, W. (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47, 1130.CrossRefGoogle Scholar
Mahood, G.A. and Stimac, J.A. (1990) Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica, 54, 22572276.CrossRefGoogle Scholar
Mallmann, G. and O'Neill, H.St.C. (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50, 17651794.CrossRefGoogle Scholar
Marshall, A.S., Macdonald, R., Rogers, N.W., Fitton, J.G., Tindle, A.G., Nejbert, K. and Hinton, R.W. (2009) Fraetionation of peralkaline silicic magmas: the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50, 323359.CrossRefGoogle Scholar
Miyawaki, R., Matsubara, S. and Miyajima, H. (2002) The crystal structure of rengeite, Sr4ZrTi4(Si2O7)2O8 . Journal of Mineralogical and Petrological Sciences, 97, 712.CrossRefGoogle Scholar
Mungall, J.E. and Martin, R.F. (1995) Petrogenesis of basalt-comendite and basalt-pantellerite suites, Terceira, Azores, and some implications for the origin of ocean-island rhyolites. Contributions to Mineralogy and Petrology, 119, 4355.CrossRefGoogle Scholar
Nash, W.P. and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 23092322.CrossRefGoogle Scholar
Novak, S.W. and Mahood, G.A. (1986) Rise and fall of a basalt-traehyte-rhyolite magma system at the Kane Springs Wash Caldera, Nevada. Contributions to Mineralogy and Petrology, 94, 352373.CrossRefGoogle Scholar
Pichavant, M., Valencia Herrera, J., Boulmier, S., Briqueu, L., Joron, J.-L., Juteau, M., Marin, L., Michard, A., Sheppard, S.M.F., Treuil, M. and Vernet, M. (1987) The Macusani glasses, SE Peru: evidence of chemical fraetionation in peraluminous magmas. Pp. 359373 in: Magmatic Processes: Physiochemical Principles (Mysen, B.O., editor). Special Publication, 1, The Geochemical Society, St. Louis, Missouri, USA.Google Scholar
Rogers, N.W., Evans, P.J., Blake, S., Scott, S.C. and Hawkesworth, C.J. (2004) Rates and timescales of fractional crystallization from 238U–230Th–226Ra in trachyte lavas from Longonot volcano, Kenya. Journal of Petrology, 45, 17471776.CrossRefGoogle Scholar
Scaillet, B. and Macdonald, R. (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. Journal of Petrology, 42, 825845.CrossRefGoogle Scholar
Shaw, D.M. (1957) The geochemistry of gallium, indium, thallium – a review. Physics and Chemistry of the Earth, 2, 164211.CrossRefGoogle Scholar
Streck, M.J. and Grunder, A.L. (2008) Phenocryst-poor rhyolites of bimodal, tholeiitic provinces: the Rattlesnake Tuff and implications for mush extraction models. Bulletin of Volcanology, 70, 385401.CrossRefGoogle Scholar
Troll, V.R. and Schmincke, H.-U. (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite ‘A’, Gran Canaria, Canary Islands. Journal of Petrology, 43, 243270.CrossRefGoogle Scholar
Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95, 407419.CrossRefGoogle Scholar
White, J.C. (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part II. Empirical models for trace-element partitioning of large-ion lithophile, high-field-strength, and rare-earth elements. American Mineralogist, 88, 330337.CrossRefGoogle Scholar
White, J.C., Holt, G.S., Parker, D.F. and Ren, M. (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part 1: Systematics of trace-element partitioning. American Mineralogist, 88, 316329.CrossRefGoogle Scholar
White, J.C., Benker, S.C., Ren, M., Urbanczyk, K.M. and Corrick, D.W. (2006) Petrogenesis and tectonic setting of the peralkaline Pine Canyon caldera, Trans-Pecos Texas, USA. Lithos, 91, 7494.CrossRefGoogle Scholar
White, J.C., Parker, D.F. and Ren, M. (2009) The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling. Journal of Volcanology and Geothermal Research, 179, 3355.CrossRefGoogle Scholar
Wilding, M.C., Macdonald, R., Davies, J.E. and Fallick, A.E. (1993) Volatile characteristics of peralkaline rhyolites from Kenya: an ion microprobe, infrared spectroscopic and hydrogen isotope study. Contributions to Mineralogy and Petrology, 144, 264275.CrossRefGoogle Scholar
Willbold, M. and Jochum, K.P. (2005) Multi-element isotope dilution sector field ICP-MS: a precise technique for the analysis of geological materials and its application to geological reference materials. Geostandards and Geoanalytical Research, 29, 6382.CrossRefGoogle Scholar