Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T17:41:56.175Z Has data issue: false hasContentIssue false

Cr-Zr-armalcolite-bearing lamproites of Cancarix, SE Spain

Published online by Cambridge University Press:  05 July 2018

Simona Contini
Affiliation:
Istituto di Petrografia Università, viale delle Scienze, 43100 Parma, Italy
Gianpiero Venturelli
Affiliation:
Istituto di Petrografia Università, viale delle Scienze, 43100 Parma, Italy
Lorenzo Toscani
Affiliation:
Istituto di Petrografia Università, viale delle Scienze, 43100 Parma, Italy
Silvio Capedri
Affiliation:
Istituto di Mineralogia e Petrologia Università, via S. Eufemia, 41100 Modena, Italy
Mario Barbieri
Affiliation:
Dipartimento di Scienze della Terra, Università 'La Sapienza', Piazzale A. Moro, 00185 Roma, Italy

Abstract

Lamproites with high MgO, high SiO2 affinity are abundant only in SE Spain where the Cancarix outcrop (in the province of Albacete) occurs. The rocks of Cancarix are peralkaline, saturated to oversaturated in silica, very high in K2O, Th and LREE. The mineralogy and petrography show some variations which depend on the conditions of emplacement and rate of cooling of the magma. The following phases may be present: olivine, phlogopite, K-amphibole, clinopyroxene, sanidine, orthopyroxene, apatite, and, in minor amounts, Cr-spinel, minerals of the pseudobrookite group, ilmenite, roedderite, dalyite, carbonate, analcime (probably pseudomorphous on leucite), a silica phase, rutile, pyrochlore (?), britholite (?) and glass. The lamproites of Cancarix contain Cr-Zrarmalcolite, which is typical of lunar basalts and which has been found also in kimberlites. The composition of early magmatic spinel and the occurrence of Cr-Zr-armalcolite indicate low oxygen fugacity for the primitive magma and related mantle source, in agreement with recent experimental data on lamproitic systems. The redox conditions changed during crystallisation, leading to increase of the Fe3+/Fe2+ ratio in the system. During the later stages of crystallisation, the residual melts/fluids were depleted in alumina and enriched in several components, e.g. Na, Zr, Fe, REE, C1, etc. stabilising Na-Fe-clinopyroxene, dalyte, arfvedsonitic rims around K-richterite and other alumina-free phases which, on a chemical basis, have been identified as britholite and pyrochlore. Rough comparison with experimental systems and the geochemistry of the rocks suggests that the magma was generated at shallow depth (≪20 kbar) in the lithospheric mantle, which, after early depletion, underwent strong enrichment in many 'incompatible' elements.

Type
Geochemistry and Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, K., Gerbert, W., Medenbaeh, O., Sehreyrer, W., and Hentschel, G. (1983) Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contrib. Mineral. Petrol., 82, 252–8.Google Scholar
Best, M. G., Henage, L. F., and Adams, J. A. S. (1968) Mica peridotite, wyomingite and associated potassic igneous rocks in northeastern Utah. Amer. Mineral., 53, 1041–8.Google Scholar
Bowles, J. F. W. (1988) Definition and range of naturally occurring minerals with the pseudobrookite structure. Ibid., 73, 1377-83.Google Scholar
Charles, R. W. (1975) The phase equilibria of richterite and ferrorichterite. Ibid. 60, 367-74.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R., and Chappel, B. W. (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol., 80, 189200.Google Scholar
Cundari, A. and Ferguson, K. K. (1991) Petrogenetic relationships between melilite and lamproite. Ibid. 107, 343-57.Google Scholar
De Larouzière, F. D., Bolze, J., Bordet, P., Hernandez, J., Montenat, C., and Ott d'Estevou, P. (1988) The Betic segment of the lithospheric Trans-Alboran and shear zone during the late Miocene. Tectonophysics, 152, 4152.Google Scholar
Erlank, A. J., Water, F. G., Hawkesworth, C. J., Haggerty, S. E., Allsopp, H. L., Rickard, R. S., and Menzies, M. (1987) Evidence for the mantle metasomatism in peridotite nodules from Kimberley pipes, South Arica. In Mantle Metasomatism. (Menzies, M. and Hawkesworth, C. J., eds). Academic Press, London, 213311.Google Scholar
Foley, S. F. (1985) The oxidation state of lamproitic magams. Tschermaks Min. Petr. Mitt., 34, 217–38.Google Scholar
Foley, S. F. (1989a) The genesis of lamproitic magmas in a reduced fluorine-rich mantle. In Kimberlites and related rocks, Vol. I (Jaques, A. L., Ferguson, J., and Green D. H., eds.), Blackwells, Carlton, 616-31.Google Scholar
Foley, S. F. (1989b) Experimental constraints on phlogopite chemistry in lamproites: 1. The effect of water activity and oxygen fugacity. Eur. J. Mineral., 1, 411–26.Google Scholar
Foley, S. F. (1990) A review and assessment of experiments on kimberlites, lamproites and lamprophyres as a guide to their origin. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 99, 5780.Google Scholar
Foley, S. F. and Venturelli, G. (1989) High KeO rocks with high MgO, high SiOe affinities. In: Boninites and related rocks. (Crawford, A. J., ed.), Unwin Hyman, London, 7288.Google Scholar
Foley, S. F. Taylor, W. R., and Green, D. H. (1986a) The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contrib. Min. Petrol. 94, 183–92.Google Scholar
Foley, S. F. Taylor, W. R., and Green, D. H. (1986b) The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Ibid., 93, 46-55.Google Scholar
Foley, S. F. Venturelli, G., Green, D. H. and Toscani, L. (1987) The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci. Rev., 24, 81124.Google Scholar
Friel, J. J., Harker, R. I., and Ulmer, G. C. (1977) Armalcolite stability as a function of pressure and oxygen fugacity. Geochim. Cosmochim. Acta, 41, 403–10.Google Scholar
Fuster, J. M., Gastesi, P., Sagredo, J., and Fermoso, M. L. (1967) Las rocas lamproiticas del SE de España. Estudios Geol. (Madrid), 23, 3559.Google Scholar
Gomez de Llarena, J. (1934) Observaciones sobre la geologia y fisiografia de alrededores de Hellin. Bol. R. Soc. Esp. Hist. Nat. (Madrid), 34, 213-31.Google Scholar
Gupta, A. K. and Green, D. H. (1988) The liquidus surface of the system forsterite-kalsilite-quartz at 28 Kbar under dry conditions, in pressure of H2O, and of CO2. Mineral. Petrol., 39, 163–74.Google Scholar
Haggerty, S. E. (1987) Metasomatic mineral titanates in upper mantle xenoliths. In: Mantle Xenoliths, (Nixon, P. H., ed.), John Wiley & Sons, New York, 671-90.Google Scholar
Hernandez-Pacheco, A. (1965) Una richterita potàsica de rocas volchnica alcalinas, Sierra de las Cabras (Albacete). Estudios Geol. (Madrid), 20, 265-9.Google Scholar
Hogarth, D. D. (1977) Classification and nomenclature of the pyrochlore group. Amer. Mineral., 62, 403–10.Google Scholar
Karlsson, H. R. and Clayton, R. N. (1991) Analcime phenocrysts in igneous rocks: primary or secondary? Ibid., 76, 189-99.Google Scholar
Kilinc, A., Carmichael, I. S. E., Rivers, M. L., and Sack, R. O. (1983) The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib. Mineral. Petrol., 83, 136–40.Google Scholar
Korytkova, E. and Makarova, T. A. (1971) Experimental study of the serpentinisation of olivine. Dokl. Acad. Sci. USSR, Earth Sci. Sect., 196, 144–5.Google Scholar
Linthout, K., Nobel, F. A., Lustenhouwer, W. J. (1988) First occurrence of dalyte in extrusive rock. Mineral. Mag., 52, 7054.Google Scholar
Luth, W. C. (1967) Studies in the system KA1SiO4-Mg2SiO4-SiOe-H2O: 1, inferred phase relations and petrologic applications. J. Petrol., 8, 372416. Mapa Geologico de España. Hoja y Memoria 868. IGME, Madrid, 1984.Google Scholar
Mineyev, D. A. (1963) Geochemical differentation of the rare-earth. Geokhimiya, 12, 1129–49.Google Scholar
Mitchell, R. H. and Bergman, S. C. (1991) Petrology of lamproites. Plenum Press, New York.Google Scholar
Nelson, D. R., McCulloeh, M. T., and Sun, S. S. (1986) The origin of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim. Cosmochim. Acta, 50, 231–45.Google Scholar
Nixon, P. H., Thirlwall, M. F., Buckley, F., and Davies, C. J. (1984) Spanish and Western Australian lamproites: aspects of whole rock geochemistry. In: Kimberlites and related rocks (Kornprobst, J., ed.). Elsevier, Amsterdam, 285-96.Google Scholar
Nobel, F. A., Andriessen, P. A. M., Hebeda, E. H., Priem, H. N. A., and Rondeel, H. E. (1981) Isotopic dating of the post-Alpine Neogene volcanism in the betic Cordilleras, southern Spain. Geol. Mijnbouw, 60, 209–14.Google Scholar
Peccerillo, A., Poli, G., and Serri, G. (1988) Petrogene-sis of orenditic and kamafugitic rocks from Central Italy. Can. Mineral., 26, 4565.Google Scholar
Velde, D., Medenbach, O., Wagner, C., and Schreyer, W. (1989) Chayesite, K(Mg,Fe2+)4Fe3+[Si12030]: a new rock-forming silicate mineral of the osurnilite group from the Moon Canyon (Utah) lamproite. Amer. Mineral., 74, 1368-73.Google Scholar
Venturelli, G., Capedri, S., Di Battistini, G., Crawford, A., Kogarko, L. N., and Celestini, S. (1984a) The ultrapotassic rocks from southeastern Spain. Lithos, 17, 3754.Google Scholar
Venturelli, G., Thorpe, R. S., Dal Piaz, G. V., Del Moro, A., and Potts, P. J. (1984b) Petrogenesis of calcalkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from North western Alps, Italy. Contrib. Mineral. Petrol., 86, 209–20.Google Scholar
Venturelli, G., Salvioli Mariani, E., Foley, S. F., Capedri, S., and Crawford, A. J. (1988) Petrogenesis and conditions of crystallisation of Spanish lamproitic rocks. Can. Mineral., 26, 6779.Google Scholar
Venturelli, G., Toscani, L., and Salvioli Mariani, E. (1991a) Mixing between lamproitic and dacitic components in Miocene volcanic rocks of S.E. Spain. Mineral. Mag., 55, 282–5.Google Scholar
Venturelli, G., Capedri, S., Barbieri, M., Toscani, L., Salvioli Mariani, E., and Zerbi, M. (1991b) The Jumilla lamproite revisited: a petrological oddity. Eur. J. Mineral., 3, 123–45.Google Scholar
Venturelli, G., Salvioli Mariani, E., Toscani, L., Barbieri, M., and Gorgoni, C. Late evolution of lamproitic magmas and related fluids. A case study using fluid inclusions and isotopes (submitted).Google Scholar
Watson, E. B. (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib. Mineral. Petrol., 70, 407–19.Google Scholar
Yeremeyev, N. V., Kononkova, V. A., Makhotkin, I. L., Dmitrieva, M. T., Aleshin, V. G. and Vash-chenko, A. N. (1988) Native metals in lamproites from Central Aldan. Trans. USSR Academy Sci., 303, 1464–7.Google Scholar