Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T22:29:25.712Z Has data issue: false hasContentIssue false

The crystal structure of sarmientite, Fe2 3+ (AsO4)(SO4)(OH)·5H2O, solved ab initio from laboratory powder diffraction data

Published online by Cambridge University Press:  05 July 2018

F. Colombo*
Affiliation:
CONICET−CICTERRA. Cátedra de Mineralogía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Vélez Sarsfield 1611, (X5016GCA) Córdoba, Argentina
J. Rius
Affiliation:
CONICET−CICTERRA. Cátedra de Mineralogía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Vélez Sarsfield 1611, (X5016GCA) Córdoba, Argentina
O. Vallcorba
Affiliation:
CONICET−CICTERRA. Cátedra de Mineralogía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Vélez Sarsfield 1611, (X5016GCA) Córdoba, Argentina
E. V. Pannunzio Miner
Affiliation:
CONICET−CICTERRA. Cátedra de Mineralogía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Vélez Sarsfield 1611, (X5016GCA) Córdoba, Argentina

Abstract

The crystal structure of sarmientite, Fe2 3+ (AsO4)(SO4)(OH)·5H2O, from the type locality (Santa Elena mine, San Juan Province, Argentina), was solved and refined from in-house powder diffraction data (CuKα1,2 radiation). It is monoclinic, space group P21/n, with unit-cell dimensions a = 6.5298(1), b = 18.5228(4), c = 9.6344(3) Å, β = 97.444(2)º, V = 1155.5(5) Å3, and Z = 4. The structure model was derived from cluster-based Patterson-function direct methods and refined by means of the Rietveld method to R wp = 0.0733 (X2 = 2.20). The structure consists of pairs of octahedral-tetrahedral (Fe−As) chains at (y,z) = (0,0) and (½,½), running along a. There are two symmetry-independent octahedral Fe sites. The Fe1 octahedra share two corners with the neighbouring arsenate groups. Both individual chains are related by a symmetry centre and joined by two symmetry-related Fe2 octahedra. Each Fe2 octahedron shares three corners with double-chain polyhedra (O3, O4 with arsenate groups; the O8 hydroxyl group with the Fe1 octahedron) and one corner (O11) with the monodentate sulfate group. The coordination of the Fe2 octahedron is completed by two H2O molecules (O9 and O10). There is also a complex network of H bonds that connects polyhedra within and among chains. Raman and infrared spectra show that (SO4)2− tetrahedra are strongly distorted.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. (1975) Beziehungen zwischen Bindungslängen und Bindungsstärken in Oxidstrukturen [Relations between bond lengths and bond strengthening in oxide structures]. Monatshefte für Chemie, 106, 779793.CrossRefGoogle Scholar
Angelelli, V. (1984) Yacimientos metalíferos de la República Argentina [Metallic deposits of the Argentine Republic]. Comisión de Investigaciones Científicas, Provincia de Buenos Aires, La Plata, Argentina.Google Scholar
Angelelli, V. and Gordon, S.G. (1941) Sarmientite, a new mineral from Argentine. Academy of Natural Sciences, Philadelphia, Notulae Naturae, 92, 14.Google Scholar
Baerlocher, C. (1995) Restraints and constraints in Rietveld refinement. Pp 186–196 in: The Rietveld Method (R.A. Young, editor). International Union of Crystallography Monographs on Crystallography. Oxford University Press, Oxford, UK.Google Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Boudjada, A. and Guitel, J.C. (1981) Structure cristalline d’un orthoarséniate acide de fer(III) pentahydraté: Fe(H2AsO4)3.5H2O. [Crystal structure of an acid iron orthoarsenate]. Acta Crystallographica B, 37, 14021405.CrossRefGoogle Scholar
Bragg, W.L. (1913) The Diffraction of Short Electromagnetic Waves by a Crystal. Proceedings of the Cambridge Philosophical Society, 17, 4357.Google Scholar
Chakhmouradian, A.R., Cooper, M.A., Medici, L., Hawthorne, F.C. and Adar, F. (2008) Fluorine-rich hibschite from silicocarbonatite, Afrikanda Complex, Russia: crystal chemistry and conditions of crystallization. The Canadian Mineralogist, 46, 10331042.CrossRefGoogle Scholar
Colombo, F., Rius, J., Pannunzio Miner, E.V., Pedregosa, J.C., Camí, G.E. and Carbonio, R.E. (2011) Sanjuanite: ab initio crystal-structure solution from laboratory powder data, complemented by FTIR spectroscopy and DT-TG analyses. The Canadian Mineralogist, 49, 835847.CrossRefGoogle Scholar
David, W.I.F., Shankland, K., McCusker, L.B. and Baerlocher, C. (editors) (2002) Structure Determination from powder diffraction data. International Union of Crystallography Monographs on Crystallography, Oxford University Press, Oxford, UK.Google Scholar
De Abeledo, M.E.J. and de Benyacar, M.A.R. (1968) New data on sarmientite. American Mineralogist, 53, 20772082.Google Scholar
Frost, R.L., Palmer, S.J. and Xi, Y. (2011) The molecular structure of the mineral sarmientite Fe2(AsO4)(SO4)(OH)·5H2O – Implications for arsenic accumulation and removal. Journal of Molecular Structure, 1004, 8893.CrossRefGoogle Scholar
Gemmi, M., Campostrini, I., Demartin, F., Gorelik, T.E. and Gramaccioli, C.M. (2012) Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography. Acta Crystallographica B, 68, 1523.CrossRefGoogle ScholarPubMed
Grey, I.E., Madsen, I.C., Mills, S.J., Hatert, F., Peterson, V.K. and Bastow, T.J. (2010) A new type of cubicstacked layer structure in anthoinite, AlWO3(OH)3 . American Mineralogist, 95, 639645.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The Crystal Chemistry of Sulfate Minerals. Pp 1–112 in: Sulfate minerals – Crystallography, Geochemistry and Environmental Significance (C.N. Alpers, J.L. Jambor, and D.K. Nordstrom, editors). Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Karanović, L., Poleti, D., Makovicky, E., Balić-Žunić, T. and Makovicky, M. (2002) The crystal structure of synthetic kutinaite, Cu14Ag6As7 . The Canadian Mineralogist, 40, 14371449.CrossRefGoogle Scholar
Langford, J.I. and Louër, D. (1996) Powder Diffraction. Reports on Progress in Physics, 59, 131234.CrossRefGoogle Scholar
Le Bail, A., Duroy, H. and Fourquet, J.F. (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Le Bail, A., Stephens, P. and Hubert, F. (2003) A crystal structure for the souzalite/gormanite series from synchrotron powder diffraction data. European Journal of Mineralogy, 15, 719723.CrossRefGoogle Scholar
Lengke, M.F., Sanpawanitchakit, C. and Tempel, R.N. (2009) The oxidation and dissolution of arsenicbearing sulfides. The Canadian Mineralogist, 47, 593613.CrossRefGoogle Scholar
Louër, D. (1991) Indexing of powder diffraction patterns. EPDIC1, Materials Science Forum 79-82, 1726.CrossRefGoogle Scholar
Majzlan, J., Lazic, B., Armbruster, T., Johnson, M.B., White, M.A., Fisher, R.A., Plásil, J. Loun, J., Skoda, R. and Nóvak, M. (2012) Crystal structure, thermodynamic properties, and paragenesis of bukovskýite, Fe2(AsO4)(SO4)(OH)·9H2O. Journal of Mineralogical and Petrological Sciences, 107, 133148.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009a) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Mills, S.J., Madsen, I.C., Grey, I.E. and Birch, W.D. (2009b) In situ XRD study of the thermal decomposition of natural arsenian plumbojarosite. The Canadian Mineralogist, 47, 683696.CrossRefGoogle Scholar
Mugnaioli, E., Gorelik, T.E., Stewart, A. and Kolb, U. (2011) “Ab-Initio” Structure Solution of Nano- Crystalline Minerals and Synthetic Materials by Automated Electron Tomography. Pp 41–54 in: Minerals and Advanced Materials II. (S. Krivovichev, editor). Springer-Verlag, Berlin Heidelberg, Germany.Google Scholar
Pawley, G.S. (1981) Unit-cell refinement from powder diffraction scans. Journal of Applied Crystallography 14, 357361.CrossRefGoogle Scholar
Peacor, D.R., Rouse, R.C., Coskren, T.D. and Essene, E.J. (1999) Destinezite ("diadochite") , Fe2(PO4)(SO4)(OH)·6(H2O): its crystal structure and role as a soil mineral at Alum Cave Bluff, Tennessee. Clays and Clay Minerals, 47, 111.CrossRefGoogle Scholar
Paktunc, D., Majzlan, J., Palatinus, L., Dutrizac, J., Klementová, M. and Poirier, G. (2013) Characterization of ferric arsenate-sulfate compounds: Implications for arsenic control in refractory gold processing residues. American Mineralogist, 98, 554565.CrossRefGoogle Scholar
Pekov, I.V., Chukanov, N.V., Yapaskurt, V.O., Rusakov, V.S., Belakovskiy, D.I., Turchkova, A.G., Voudouris, P., Katerinopoulos, A. and Magganas, A. (2012) Hilarionite, IMA 2011-089. CNMNC Newsletter No. 12. Mineralogical Magazine, 76, 151155.Google Scholar
Perchiazzi, N., Ondruš, P. and Skála, R. (2004) Ab initio X-ray powder structure determination of parascorodite, Fe(H2O)2AsO4. European Journal of Mineralogy, 6, 10031007.CrossRefGoogle Scholar
Peterson, R. (2011) Cranswickite MgSO4·4H2O, a new mineral from Calingasta, Argentina. American Mineralogist, 96, 869877.CrossRefGoogle Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.CrossRefGoogle Scholar
Rius, J. (2009) RIBOLS18: A computer program for restrained Rietveld refinement. Institut de Ciència de Materials de Barcelona (CSIC), Barcelona, Spain.Google Scholar
Rius, J. (2011) Patterson-function direct methods for structure determination from powder diffraction data. Acta Crystallographica A, 67, 6367.CrossRefGoogle ScholarPubMed
Rius, J. and Plana, F. (1982) Una nueva función que relaciona la longitud de enlace iónico con la valencia electrostática del catión [A new function that relates the ionic bond length with the electrostatic valence of the cation]. Anales de Química B, 80, 147149.Google Scholar
Rius, J., Elkaim, E. and Torrelles, X. (2004) Structure determination of the blue mineral pigment aerinite from synchrotron powder diffraction data: The solution of an old riddle. European Journal of Mineralogy, 16, 127134.CrossRefGoogle Scholar
Rius, J., Mugnaioli, E., Vallcorba, O. and Kolb, U. (2013) Application of d recycling to electron automated diffraction tomography data from inorganic crystalline nano volumes. Acta Crystallographica, A, 69, 396407.CrossRefGoogle Scholar
Rozhdestvenskaya, I., Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U., Reinholdt, A. and Weirich, T. (2010) The structure of charoite (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)] (OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineralogical Magazine, 74, 159177.CrossRefGoogle Scholar
Vallcorba, O., Rius, J., Frontera, C., Peral, I. and Miravitlles, C. (2012) DAJUST A suite of computer programs for pattern matching, space-group determination and intensity extraction from powder diffraction data. Journal of Applied Crystallography, 45, 844848.CrossRefGoogle Scholar
Walker, S.R., Parsons, M.B., Jamieson, H.E. and Lanzirotti, A. (2009) Arsenic mineralogy of nearsurface tailings and soils: influences on arsenic mobility and bioaccesibility in the Nova Scotia gold mining districts. The Canadian Mineralogist, 47, 533556.CrossRefGoogle Scholar
Wallwork, K.S., Pring, A., Taylor, M.R. and Hunter, B.A. (2002) The structure of priceite, a basic hydrated calcium borate, by ab initio powderdiffraction methods. The Canadian Mineralogist, 40, 11991206.CrossRefGoogle Scholar
Wallwork, K.S., Pring, A., Taylor, M.R. and Hunter, B.A. (2003) A model for the structure of the hydrated aluminum phosphate, kingite determined by an initio powder diffraction methods. American Mineralogist, 88, 235239.CrossRefGoogle Scholar
Werner, P.E., Erikson, L. and Westdahl, M. (1985) TREOR, a semiexhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18, 367370.CrossRefGoogle Scholar
Young, R.A. (editor) (1993) The Rietveld Method. International Union of Crystallography Monographs on Crystallography, Oxford University Press, Oxford, UK. 298 pp.Google Scholar
Zappettini, E.O., Brodktorb, M.K. de and Pezzutti, N. (1999) El yacimiento polimetálico Santa Elena, San Juan [The polymetallic Santa Elena deposit, San Juan]. Pp 721–724 in: Recursos Minerales de la República Argentina (E.O. Zappettini, editor). [Mineral Resources of the Argentine Republic]. Instituto de Geología y Recursos Minerales SEGEMAR, Anales 35, Buenos Aires.Google Scholar
Zou, X., Hovmöller, S. and Oleynikov, P. (2011) Electron Crystallography: Electron Microscopy and Electron Diffraction. International Union of Crystallography Texts on Crystallography, Oxford University Press, Oxford, UK.Google Scholar