Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T14:13:00.986Z Has data issue: false hasContentIssue false

Crystal structure of paralaurionite and its OD relationships with laurionite

Published online by Cambridge University Press:  05 July 2018

S. Merlino
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 1-56126 Pisa, Italy
M. Pasero
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 1-56126 Pisa, Italy
N. Perchiazzi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 1-56126 Pisa, Italy

Abstract

The crystal structure of the rare lead hydroxychloride paralaurionite [PbCI(OH), monoclinic, space group C2/m, a = 10.865(4), b = 4.006(2), c = 7.233(3) Å, β = 117.24(4)°] has been refined to R = 0.062, Rw = 0.048. Its Order-Disorder (OD) character and its OD relationships with the orthorhombic polytpe of PbCI(OH), laurionite, are discussed. Laurionite and paralaurionite represent the two MDO structures within a family of OD structures built up by two different kinds of layers. The structures of paralaurionite and laurionite are compared thoroughly. The first coordination of the various atoms in the two polytypes is the same, however, remarkable differences exist in the connection between adjacent Pb-centred polyhedra.

Type
Crystal Structure
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzruni, A. and Thaddéeff, K. (1899) Neue Minerale aus Chile, ein neues Vorkommen von Utahit und ein neues Wismuthcarbonat yon Schneeberg. Z. Kristal-logr., 31, 229–47.Google Scholar
Brasseur, H. (1940) Etude roentgenographique de la laurionite PbOHC1. Bull. Soc. Roy. Sci. Liege, 9, 166–9.Google Scholar
Cannillo, E., Giuseppetti, G., and Tadini, C. (1969) Riesame della struttura della laurionite PbOHC1. Per. Mineral., 38, 395402.Google Scholar
Dornberger-Schiff, K. (1964) Grundziige einer Theorie der OD Strukturen aus Schichten. Abh. Dtsch. Akad. Berlin, KI. Chem. Geol. Biol., no. 3.Google Scholar
Dornberger-Schiff, K. (1966) Lehrgang über OD-Strukturen. AkademieVerlag, Berlin, 135 pp.Google Scholar
Dornberger-Schiff, K. (1967) On the relation between the monoclinic and the orthorhombic form of yttrium hydroxychloride, [YCI(OH)2]n. Acta Crystallogr., 22, 435–6.Google Scholar
Dornberger-Schiff, K. (1982) Geometrical properties of MDO polytypes and procedures for their derivation. I. General concept and application to polytype families consisting of OD layers all of the same kind. Ibid., A38, 483-91.Google Scholar
Dornberger-Schiff, K. and Grell, H. (1982) Geometrical properties of MDO polytypes and procedures for their derivation. II. OD families containing OD layers of M > 1 kinds and their MDO polytypes. Ibid., A38, 491-8.+1+kinds+and+their+MDO+polytypes.+Ibid.,+A38,+491-8.>Google Scholar
Durovič, S. (1979) Desymmetrization of OD structures. Krist. Techn., 14, 1047–53.Google Scholar
Franzini, M., Perchiazzi, N., Bartoli, M. L., and Chiappino, L. (1992) Baratti, una nuova localith mineralogica simile al Laurion. Riv. Mineral. It., 23, 114. 67-75.Google Scholar
Goldsztaub, St. (1937) Structure cristalline de la laurionite. C.R. Acad. Sci. Paris, 204, 702–3.Google Scholar
Goldsztaub, St. (1939) Arrangement des atomes dans la laurionite. Ibid., 208, 1234-5.Google Scholar
Grell, H. and Dornberger-Schiff, K. (1982) Symbols of OD groupoid families referring to OD structures (polytypes) consisting of more than one kind of layer. Acta Crystallogr., A38, 49-54.Google Scholar
Köchlin, R. (t887) Uber Phosgenit und ein muthmass-lich neues Mineral vom Laurion. Ann. Naturhist. Hofmuseums Wien, ser. H, 2, 185–90.Google Scholar
Merlino, S. (1990) OD structures in mineralogy. Per. Mineral., 59, 6992.Google Scholar
Merlino, S. Orlandi, P., Perchiazzi, N., Basso, R., and Palenzona, A. (1989) Polytypism in stibivanite. Can. Mineral., 27, 625–32.Google Scholar
Nickel, E. H. and Mandarino, J. A. (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names and guidelines on mineral nomenclature. Amer. Mineral., 72, 1031–49.Google Scholar
Palaehe, C. (1934) The form relations of the lead oxychlorides, laurionite, paralaurionite, and fiedler-ite. Mineral. Mag., 23, 573–86.Google Scholar
Palaehe, C. (1950) Paralaurionite. Ibid., 29, 341-5.Google Scholar
Palaehe, C. Berman, H., and Frondel, C. (1951) Dana's system of mineralogy. Vol. II. 7th ed. New York, John Wiley and Sons, 1124 pp.Google Scholar
von Rath, G. (1887) Einige mineralogische und geolo-gische Mittheilungen. Sitzungsber. Niederrhein. Gesell. Nature Bonn, 102, 149–51.Google Scholar
Russell, A. (1928) On laurionite and associated min-erals from Cornwall. Mineral. Mag., 21, 221–8.Google Scholar
Sheldrick, G. M. (1976) SHELX76—Program for crystal structure determination. Univ. of Cambridge, England.Google Scholar
Smith, G. F. H. (1899a) On some lead minerals from Laurium, namely, laurionite, phosgenite, fiedlerite, and (new species) paralaurionite. Mineral. Mag., 12, 102–10.Google Scholar
Smith, G. F. H. (1899b) Note on the identity of paralaurionite and rafaelite. Ibid., 12, 183.Google Scholar
Venetopoulos, C. Ch. and Rentzeperis, P. J. (1975) The crystal structure of laurionite, Pb(OH)CI. Z. Kristal-logr., 141, 246–59.Google Scholar
Walker, N. and Stuart, D. (1983) An empirical method for correcting of diffractometer data for absorption effects. Acta Crystallogr., A39, 158-66.Google Scholar