Article contents
The crystal structure of gatehouseite
Published online by Cambridge University Press: 05 July 2018
Abstract
The crystal structure of the manganese phosphate mineral gatehouseite, ideally Mn52+(PO4)2(OH)4, space group P212121, a = 17.9733(18), b = 5.6916(11), c = 9.130(4) Å, V= 933.9(4) Å3, Z = 4, has been solved by direct methods and refined from single-crystal X-ray diffraction data (T = 293 K) to an R index of 3.76%. Gatehouseite is isostructural with arsenoclasite and with synthetic Mn52+(PO4)2(OH)4. The structure contains five octahedrally coordinated Mn sites, occupied by Mn plus very minor Mg with observed <Mn—O> distances from 2.163 to 2.239 Å. Two tetrahedrally coordinated P sites, occupied by P, Si and As, have <P—O> distances of 1.559 and 1.558 Å. The structure comprises two types of building unit. A strip of edge-sharing Mn(O,OH)6 octahedra, alternately one and two octahedra wide, extends along [010]. Chains of edge- and corner-shared Mn(O,OH)6 octahedra coupled by PO4 tetrahedra extend along [010]. By sharing octahedron and tetrahedron corners, these two units form a dense three-dimensional framework, which is further strengthened by weak hydrogen bonding. Chemical analyses by electron microprobe gave a unit formula of (Mn4.99Mg0.02)Σ5.01(P1.76Si0.07(As0.07)Σ2.03O8(OH)3.97.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 2011
References
- 2
- Cited by