Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T17:39:47.204Z Has data issue: false hasContentIssue false

The crystal structure of ferrinatrite, Na3(H2O)3[Fe(SO4)3] and its relationship to Maus's salt, (H3O)2K2{K0.5(H2O)0.5}6[Fe3O(H2O)3(SO46](OH)2

Published online by Cambridge University Press:  05 July 2018

F. Scordari*
Affiliation:
Istituto di Mineralogia e Petrografia dell'Università di Bari, Italy

Summary

Ferrinatrite crystallizes in space group P, with a = 15·566(5), c = 8·69(1) Å, and Z = 6. The crystal structure was solved by three-dimensional Patterson and Fourier syntheses, and refined by least squares employing 2378 independent reflexions to a final R value of 0·068. The iron ions occupy special positions and are surrounded octahedrally by oxygen atoms. Fe3+O6 octahedra and SO4, tetrahedra are linked together to form infinite chains of Fe-O-S linkages in the [0001] direction. These chains are linked to each other by [NaO5(H2O)2] polyhedra and probably by hydrogen bonds. The topology of the arrangement is the same as that of the hypothetical P312 structure proposed by Moore and Araki (1974).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzuni, (A.) and Frenzel, (A.), 1891. Z. Krystallogr. Mineral. 18, 595.Google Scholar
Bandy, (M. C), 1938. Am. Mineral. 23, 735.Google Scholar
Busing, (W. R.), Martin, (K. O.), and Levy, (H. A.), 1962. Oak Ridge National Laboratory Report TM 305, Oak Ridge, Tennessee.Google Scholar
Cesbron, (F.), 1964. Bull. Soc.fr. Mineral. Cristallogr. 87, 125.Google Scholar
Cromer, (D. T.) and Waber, (J. T.), 1965. Ada Crystallogr. 18, 104.CrossRefGoogle Scholar
Fang, (J. H.) and Robinson, (P. D.), 1970. Am. Mineral. 55, 1534.Google Scholar
Genth, (F. A.) and Penfield, (S. L.), 1890. Am. J. Sci., ser. 3,40, 199.Google Scholar
Giacovazzo, (C), Menchetti, (S.), and Scordari, (F.), 1970. Rend. Accad. Naz. Lincei, 49, 129.Google Scholar
Giacovazzo, (C), Scordari, (F.), and Menchetti, (S.), 1975. Acta Crystallogr. B 31, 2171.Google Scholar
Giacovazzo, (C), Todisco, (A.), and Menchetti, (S.), 1976. Tschermaks Mineral. Petrogr. Mitt. 23, 11.CrossRefGoogle Scholar
Gordon, (S. G.), 1942. Not. Nat. Acad. Sci. Philadelphia, no. 103.Google Scholar
Graeber, (E. J.) and Rosenzweig, (A.), 1971. Am. Mineral. 56, 1917.Google Scholar
Hartman, (P.) and Perdok, (W. G.), 1955. Acta Crystallogr. 8, 49.CrossRefGoogle Scholar
Mackintosh, (J. B.), 1889. Am. J. Sci., ser. 3, 38, 242.Google Scholar
Moore, (P. B.) and Araki, (T.), 1974. Neues Jahrb. Mineral. Abh. 121, 208.Google Scholar
Palache, (C), Berman, (H.), and Frondel, (C), 1951. Dana's System of Mineralogy, 7th edn., 2, 456.Google Scholar
Robinson, (P. D.) and Fang, (J. H.), 1971. Am. Mineral. 56, 1567.Google Scholar
Scharizcr, (R.), 1905. Z. Krystallogr. Mineral. 41, 209.Google Scholar
Shannon, (R. D.) and Prewitt, (C. T.), 1969. Acta Crystallogr. B 25, 925.CrossRefGoogle Scholar
Van Tassel, (R.), 1961. Inst. R. Sci. Nat. Belg. 37, 1.Google Scholar