Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T00:20:39.875Z Has data issue: false hasContentIssue false

Crystal structure of a novel synthetic compound, Pb2O(OH)I, and structure refinement of ‘iodolaurionite’, Pb(OH)I: hydroxo- and oxocentred units in Pb minerals and synthetic compounds

Published online by Cambridge University Press:  05 July 2018

O. I. Siidra*
Affiliation:
Department of Crystallography, Geological Faculty, Saint-Petersburg State University, University emb. 7/9, St. Petersburg, 199034, Russia
D. Yu. Zenko
Affiliation:
Department of Crystallography, Geological Faculty, Saint-Petersburg State University, University emb. 7/9, St. Petersburg, 199034, Russia
A. N. Suknotova
Affiliation:
Department of Crystallography, Geological Faculty, Saint-Petersburg State University, University emb. 7/9, St. Petersburg, 199034, Russia
S. V. Krivovichev
Affiliation:
Department of Crystallography, Geological Faculty, Saint-Petersburg State University, University emb. 7/9, St. Petersburg, 199034, Russia
*

Abstract

Yellow needles of 'iodolaurionite', Pb(OH)I, and a novel compound Pb2O(OH)I, have been prepared by hydrothermal reactions of PbO and PbI2 at 170°C. The crystal structure of 'iodolaurionite', Pb(OH)I (orthorhombic, Pnma, a = 7.8244(8), b = 4.2107(4), c = 10.4724(10) Å, V = 345.03(6) Å3, Z = 4) has been refined to R1 = 0.041 for 129 independent observed reflections. The structure is based on the OHPb3 triangles sharing common edges to produce single [OHPb]+ chains extending along the b axis and parallel to the ab plane. The three-dimensional integrity of the structure is provided by the Pb–I bonds and the O–H···I hydrogen bonding. The structure is isotypic with that of laurionite, Pb(OH)Cl. The crystal structure of Pb2O(OH)I (monoclinic, C2/m, a = 13.711(3), b = 4.0975(10), c = 9.584(2) Å, β = 110.64(1)°, V = 503.9(2) Å3, Z = 4), has been solved by direct methods and refined to R1 = 0.053 for 586 independent observed reflections. In the structure of Pb2O(OH)I, O(1)Pb4 tetrahedra link together by sharing edges and corners to form [OPb2]2+ chains similar to those observed in sidpietersite. The O(2) atoms belong to hydroxyl groups attached to both sides of the chains to produce novel [O(OH)Pb2]+ 1D units. The [O(OH)Pb2]+ units are extended parallel to the b axis and lie within the bc plane. The [O(OH)Pb2]+ units are linked together via hydrogen bonding in the (100) plane and by weak Pb–I bonds in the [100] direction. The [O(OH)Pb2]+ bands can be obtained from the [OPb] layer of OPb4 tetrahedra present in the structure of tetragonal PbO (litharge). The continuous [OPb] layer has to be broken into [O2Pb2] bands containing 3- and 4-coordinated O atoms in the 1:1 ratio with subsequent protonation of the 3-coordinated O sites. Relations of Pb(OH)I and Pb2O(OH)I to known Pb hydroxy- and oxyhalides are described briefly.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adovasio, V. and Nardelli, M. (1995) Metal-hydroxyl ribbons in Pb(OH)(NCS). Acta Crystallographica, C51, 380382.Google Scholar
Bindi, L., Welch, M.D., Bonazzi, P., Pratesi, G. and Menchetti, S. (2008) The crystal structure of seeligerite, Pb3IO4Cl3, a rare Pb-I-oxychloride from the San Rafael mine, Sierra Gorda, Chile. Mineralogical Magazine, 72, 771783.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Chapman, J. and Scott, K. (2005) Supergene minerals from the oxidised zone of the Elura (Endeavor) leadzinc- silver deposit. Australian Journal of Mineralogy, 11, 8390.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1999) The structure topology of sidpietersite, Pb2+ 4 S6+O3S2–O2(OH)2, a novel thiosulfate structure. The Canadian Mineralogist, 37, 12751282.Google Scholar
Edwards, R., Gillard, R.D., Williams, P.A. and Pollard, A.M. (1992) Studies of secondary mineral formation in the PbO-H2O-HCl system. Mineralogical Magazine, 56, 5365.CrossRefGoogle Scholar
Ettler, V., Johan, Z., Baronnet, A., Jankovský, F., Gilles, C., Mihaljevič, M., Šebek, O. and Bezdička, P. (2005) Mineralogy of air-pollution-control residues from a secondary lead smelter: Environmental implications. Environmental Science & Technology, 39, 93099316.CrossRefGoogle ScholarPubMed
Gabrielson, O., Parwel, A. and Wickman, F.E. (1958) Blixite, a new lead-oxyhalide mineral from Långban. Arkiv för Kemi, Mineralogi och Geologi, 32, 411415.Google Scholar
Ioannidis, Th.A., Zouboulis, A.I. and Matis, K.A. (2006) Effective treatment and recovery of laurionite-type lead from toxic industrial solid wastes. Separation and Purification Technology, 48, 5061.CrossRefGoogle Scholar
Keller, P., Lissner, F. and Schleid, T. (2001) Damaraite, Pb3O2(OH)Cl: crystal structure and new chemical formula. Neues Jahrbuch für Mineralogie, 7, 326336.Google Scholar
Köchlin, R. (1887) Ueber Phosgenit und ein muthmasslich neues Mineral vom Laurion. Annalen des K.K. Naturhistorischen Hofmuseums, 2, 185190.Google Scholar
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitschrift für Kristallographie, 216, 245247.Google Scholar
Krivovichev, S.V. and Burns, P.C. (2000) Crystal chemistry of basic lead carbonates. II. Crystal structure of synthet i c ‘plumbonacr i t e ’. Mineralogical Magazine, 64, 10691075.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2001) Crystal chemistry of lead oxide chlorides. I. Crystal structures of synthetic mendipite, Pb3O2Cl2, and synthetic damaraite, Pb3O2(OH)Cl. European Journal of Mineralogy, 13, 801809.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2006) The crystal structure of blixite Pb8O5(OH)2Cl4, a synthetic analogue of blixite? The Canadian Mineralogist, 44, 515522.Google Scholar
Krivovichev, S.V., Turner, R., Rumsey, M., Siidra, O.I., and Kirk, C.A. (2009) The crystal structure of mereheadite. Mineralogical Magazine, 73, 103117.CrossRefGoogle Scholar
Krivovichev, S.V., Mentre, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, dx.doi.org/10.1021/cr3004696.CrossRefGoogle ScholarPubMed
Merlino, S., Pasero, M. and Perchiazzi, N. (1993) Crystal structure of paralaurionite and its OD relationships with laurionite. Mineralogical Magazine, 57, 323328.CrossRefGoogle Scholar
Merlino, S., Pasero, M., Perchiazzi, N. and Gianfagna, A. (1995) X-ray and electron diffraction study of penfieldite; average structure and multiple cells. Mineralogical Magazine, 59, 341347.CrossRefGoogle Scholar
Naesaenen, R. (1966) An x-ray crystallographic study of lead hydroxide iodide. Suomen Kemistilehti B, B39, 105108.Google Scholar
Nathan, J.W., Akins, B.A., Rivera, A.C., Plumley, J.B., Smolyakov, G.A. and Osiń ski, M. (2009) Leadiodide- based nanoscintillators for detection of ionizing radiation. Proceedings of SPIE – The International Society for Optical Engineering, 7304, art. no. 73041N.Google Scholar
Post, J. E. and Buseck, P. R. (1985) Quantitative energydispersive analysis of lead halide particles from the Phoenix urban aerosol. Environmental Science & Technology, 19, 682685.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V. and Filatov, S.K. (2008a) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie, 223, 114126.Google Scholar
Siidra, O.I., Krivovichev, S.V., Turner, R. and Rumsey, M.S. (2008b) Chloroxiphite Pb3CuO2(OH)2Cl2: structure refinement and description in terms of oxocentered OPb4 Tetrahedra. Mineralogical Magazine, 72, 793798.CrossRefGoogle Scholar
Siidra, O.I., Britvin, S.N. and Krivovichev, S.V. (2009) Hydroxocentered [(OH)Tl3]2+ triangle as a building unit in thallium compounds: synthesis and crystal structure of Tl4(OH)2CO3 . Zeitschrift für Kristallographie, 224, 563567.CrossRefGoogle Scholar
Siidra, O.I., Britvin, S.N., Krivovichev, S.V. and Depmeier, W. (2010) Polytypism of alkaline hydroxides: crystal structure of TlOH. Zeitschrift für anorganische und allgemeine Chemie, 636, 595599.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V., Turner, R.W., Rumsey, M.S. and Spratt, J. (2013a) Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures. Crystal structure of hereroite, [Pb32O20(O, □)](AsO4)2((Si,As,V,Mo)O4)2Cl10. American Mineralogist, 98, 248255.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V., Turner, R.W., Rumsey, M.S. and Spratt, J. (2013b) Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures. II. Crystal structure of vladkrivovichevite, [Pb32O18][Pb4Mn2O]Cl14(BO3)8·2H2O. American Mineralogist, 98, 256261.CrossRefGoogle Scholar
Turner, R.W. and Rumsey, M.S. (2010) Mineral relationships in the Mendip Hills. Journal of the Russell Society, 13, 346.Google Scholar
Venetopoulos, C.C. and Rentzeperis, P.J. (1975) The crystal structure of laurionite, Pb(OH)Cl. Zeitschrift für Kristallographie, 141, 246259.CrossRefGoogle Scholar
Welch, M.D., Criddle, A.J. and Symes, R.F. (1998) Mereheadite, Pb2O(OH)Cl: a new litharge-related oxychloride from Merehead Quarry, Cranmore, Somerset. Mineralogical Magazine, 62, 387393.CrossRefGoogle Scholar
Welch, M.D., Hawthorne, F.C., Cooper, M.A. and Kyser, T.K. (2001) Trivalent iodine in the crystal structure of schwartzembergite, Pb2+ 5 I3+O6H2Cl3. The Canadian Mineralogist, 39, 785795.CrossRefGoogle Scholar
Wickleder, M.S. (2005) Chains of OH–-centered [Pb2+]3 triangles in the crystal structure of Pb3(OH)2(NH2SO3)4 . Zeitschrift für anorganische und allgemeine Chemie, 631, 25402543.CrossRefGoogle Scholar
Supplementary material: File

Siidra et al. supplementary material

Structure factors 1

Download Siidra et al. supplementary material(File)
File 8.1 KB
Supplementary material: File

Siidra et al. supplementary material

Strucure Factors 2

Download Siidra et al. supplementary material(File)
File 35.5 KB
Supplementary material: File

Siidra et al. supplementary material

CIF 1

Download Siidra et al. supplementary material(File)
File 10.1 KB
Supplementary material: File

Siidra et al. supplementary material

CIF 2

Download Siidra et al. supplementary material(File)
File 52.4 KB