Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T11:42:03.942Z Has data issue: false hasContentIssue false

Crystal structure and stability of Ni-rich synthetic tourmaline. Distribution of divalent transition-metal cations over octahedral positions

Published online by Cambridge University Press:  02 January 2018

Oleg S. Vereshchagin*
Affiliation:
St Petersburg State University, Saint Petersburg, Russia
Olga V. Frank-Kamenetskaya
Affiliation:
St Petersburg State University, Saint Petersburg, Russia
Ira V. Rozhdestvenskaya
Affiliation:
St Petersburg State University, Saint Petersburg, Russia
*

Abstract

The crystal structure of synthetic Ni-rich tourmaline with a nickel content of 18.96 wt.% NiO (a = 15.890(2), c = 7.1815(8) Å) has been refined to R = 3.1% using single-crystal X-ray diffraction data. It has been shown that Ni is distributed not only over the Y, but also over the Z sites according to the ideal formula Na(Ni22+Al)(Al5Ni2+)(Si6O18)(BO3)3(OH)4. Based on bond valences and charge balance analysis it has been shown that this composition corresponds to the stable disordered member of the solid solution series NaAl3Al6(Si6O18)(BO3)3(O)3(OH) NaNi32+Al6(Si6O18)(BO3)3(OH)4.

Taking into consideration available structural data on Me2+ (Ni, Cu, Co, Fe, Mn)-rich tourmalines, cation-size mismatch and bond-valence calculations we assume that there are no structural constraints precluding occurrence of these cations in both octahedral sites. Divalent transitional metal-rich tourmalines have not been found in Nature probably due to the insufficient concentration of these elements in B-rich geological systems.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Crystallography, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russia

References

Akselrud, L.G., Grin, Yu.N., Zavalij, P.Yu., Pecharsky, V.K., Fundamenskii, V.S. (1989) CSD-Universal program package for single crystal and/or powder structure data treatment. Abstracts, 12th European Crystallographic Meeting, 3, 155.Google Scholar
Anhaeusser, C.R. (2012) The history of mining in the Barberton greenstone belt, South Africa, with an emphasis on gold (1868-2012). Abstract, International Mining History Congress, Johannesburg, South Africa. [Available from http://www.imhc.co.za/assets/pdfpapers/].Google Scholar
Baksheev, LA. and Kudryavtseva, O.E. (2004) Nickeloan tourmaline from the Berezovskoe gold deposit, Middle Urals, Russia. The Canadian Mineralogist, 42, 10651078.CrossRefGoogle Scholar
Belov, N.V. and Belova, E.N. (1949) The crystal structure of tourmaline. Doklady of Academii of Science of SSSR, 69, 185188.Google Scholar
Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S. and Guidotti, C.V. (1999) Linking structure and chemistry in the schorl-dravite series. American Mineralogist, 84, 922928.CrossRefGoogle Scholar
Bosi, F. (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. American Mineralogist, 93, 16471653.CrossRefGoogle Scholar
Bosi, F (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine, 74, 10371044.CrossRefGoogle Scholar
Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. The Canadian Mineralogist, 49, 1727.CrossRefGoogle Scholar
Bosi, F. and Andreozzi, G.B. (2013) A critical comment on Ertl et al. 2012) Limitations of Fe2+ and Mn2+site occupancy in tourmaline: Evidence from Fe +-and Mn2+-rich tourmaline. American Mineralogist, 98, 21832192.CrossRefGoogle Scholar
Bosi, F. and Skogby, H. (2013) Oxy-dravite, Na(Al2Mg) (Al5Mg)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 14421448.CrossRefGoogle Scholar
Bosi, F., Lucchesi, S. and Reznitskii, L. (2004) Crystal chemistry of the dravite—chromdravite series. European Mineralogical Journal, 16, 345352.CrossRefGoogle Scholar
Bosi, F., Agrosi, G., Lucchesi, S., Melchiorre, G. and Scandale, E. (2005) Mn-tourmaline from island of Elba (Italy): Crystal chemistry. American Mineralogist, 90, 16611668.CrossRefGoogle Scholar
Bosi, F., Reznitskii, L. and Skogby, H. (2012) Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6Oi8) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 97, 20242030.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Agrosi, G. and Scandale, E. (2014) Fluor-tsilaisite, NaMn3Al6(Si6O18) (BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineralogical Magazine, 79, 89101.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B 47, 192197.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals 11 (M. O'Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D. (1992) Chemical and steric constraints in inorganic solids. Ada Crystallographica, B 48, 553572.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Ada Crystallographica, B 41, 244247.Google Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bond-strength-bond-length curves for oxides. Ada Crystallographica, A 29, 266282.Google Scholar
Buerger, M.J., Burnham, C.W. and Peacor, D.R. (1962) Assessment of several structures proposed for tourmaline. Ada Crystallographica, 15, 583590.CrossRefGoogle Scholar
Burns, R.G. (1972) Mixed valencies and site occupan-cies of iron in silicate minerals from Moessbauer spectroscopy. Canadian Journal of Spedroscopy, 17, 5159.Google Scholar
Burns, P.C., MacDonald, DJ. and Hawthorne, F.C. (1994) The crystal-chemistry of manganese-bearing elbaite. The Canadian Mineralogist, 32, 3141.Google Scholar
Clark, CM., Wadoski, E.R. and Freeman, E.D. (2008) Tourmaline chemistry and the IIIB site. American Mineralogist, 93, 409413.CrossRefGoogle Scholar
Curie, J. and Curie, P. (1882) Phenomeneselectriques des cristauxhemiedres a faces inclines. Journal de Physique theorique et appliquee, 1, 245251.CrossRefGoogle Scholar
De Waal, S.A. (1986) The Bon Accord nickel occurrence at Barberton. Pp. 287291 in: Mineral Deposits of Southern Africa, 1. (Anhaeusser, C.R. and S. Maske, editors). Geological Society of South Africa, 1020 pp.Google Scholar
Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F., Jr., Wright, S.E., Brandstatter, F. and Marler, B. (2002) Polyhedron distortions in tourmaline. The Canadian Mineralogist, 40, 153162.CrossRefGoogle Scholar
Ertl, A., Kolitsch, U., Dyar, M.D., Hughes, J.M., Rossman, G.R., Pieczka, A., Henry, D.J., Pezzotta, F., Prowatke, S., Lengauer, C.L., Korner, W., Brandstatter, F., Francis, C.A., Prem, M. and Tillmanns, E. (2012a) Limitations of Fe2+ and Mn + site occupancy in tourmaline: Evidence from Fe-and Mn-rich tourmaline. American Mineralogist, 97, 14021416.CrossRefGoogle Scholar
Ertl, A., Giester, G., Ludwig, T., Meyer, H.-P. and Rossman, G.R. (20126) Synthetic B-rich olenite: Correlations of single-crystal structural data. American Mineralogist, 97, 15911597.CrossRefGoogle Scholar
Ferrow, E.A. (1994) Mossbauer effect study of the crystal chemistry of tourmaline. Hyperfine Interactions, 91, 689695.CrossRefGoogle Scholar
Filip, J., Bosi, F., Novak, M., Skogby, H., Tucek, J., Cuda, J. and Wildner, M. (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe +-rich schorl. Geochimica et Cosmochimica Ada, 86, 239256.CrossRefGoogle Scholar
Foit, F.F.Jr., and Rosenberg, P.E. (1979) The structure of vanadium-bearing tourmaline and its implications regarding tourmaline solid solutions. American Mineralogist, 64, 788798.Google Scholar
Fox, G.W. and Fink, G.A. (1934) The piezoelectric properties of quartz and tourmaline. Physics, 5, 302307.CrossRefGoogle Scholar
Gorskaya, M.G., Frank-Kamenetskaya, O.V., Rozhdestvenskaya, I.V. and Frank-Kamenetskiy, V.A. (1982) The refinement of crystal structure Al-rich elbaite. Crystallography reports, 27, 107112 [in Russian].Google Scholar
Gorskaya, M.G., Frank-Kamenetskaya, O.V., Frank-Kamenetsky, V.A. and Rozhdestvenskaya, I.V. (1984) Crystal structure of chromdravite, a new mineral. Procedings of the 27th International Geological Congress, Moscow, Russia, 48—49.Google Scholar
Gorskaya, M.G., Frank-Kamenetskaya, O.V., Rozhdestvenskaya, I.V., Frank-Kamenetskii, V.A., Rumyantseva, E.V. and Kozlov, V.S. (1987) Isomorphism of chromium-bearing tourmaline. Pp. 4961 in: Comparative Crystal Chemistry (Urusov, V.S. and D. Pushcharovsky, editors). Publishing House of Moscow State University, Russia [in Russian].Google Scholar
Hawkins, K.D., Mackinnon, I.D.R. and Schneeberger, H. (1995) Influence of chemistry on the pyroelectric effect in tourmaline. American Mineralogist, 80, 491501.CrossRefGoogle Scholar
Hawthorne, F.C. (2002) Bond valence constraints on the chemical composition of tourmaline. The Canadian Mineralogist, 40, 789797.CrossRefGoogle Scholar
Hawthorne, F.C, MacDonald, DJ. and Burns, P.C. (1993) Reassignment of cation site-occupancies in tourmaline: Al/Mg disorder in the crystal structure of dravite. American Mineralogist, 78, 265270.Google Scholar
Henry, DJ. and Dutrow, B.L. (2001) Compositional zoning and element partitioning in nickeloan tourmaline from a metamorphosed karstbauxite from Samos, Greece. American Mineralogist, 80, 11301142.CrossRefGoogle Scholar
Henry, DJ., Novak, M., Hawthorne, F.C, Ertl, A., Dutrow, B., Uher, P. and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895913.CrossRefGoogle Scholar
van Hinsberg, V.J., Henry, DJ. and Marschall, H.R. (2011) Tourmaline: An ideal indicator of its host environment: An introduction. The Canadian Mineralogist, 49, 116.CrossRefGoogle Scholar
Hughes, J.M., Rakovan, J., Ertl, A., Rossman, G.R., Baksheev, I. and Bernhardt, HJ. (2011) Dissymmetrization in tourmaline: the atomic ar-rangement of sectorally zoned triclinic Ni-bearing dravite. The Canadian Mineralogist, 49, 2940.CrossRefGoogle Scholar
Lebedev, A.S., Kargalcev, S.V. and Pavlychenko, V.S, (1988) Synthesis and properties of tourmaline series Al-Mg-(Na) and Al-Fe-(Na). Pp. 58-75 in: Proceedings of Genetic and Experimental Mineralogy. Growth and Properties of Crystals. Nauka, Novosibirsk, Russia [in Russian].Google Scholar
MacDonald, DJ. and Hawthorne, F.C. (1995a) Cu-bearing tourmaline from Paraiba, Brazil. Ada Crystallographica, 51, 555557.Google Scholar
MacDonald, DJ. and Hawthorne, F.C. (19956) The crystal chemistry of Si = Al substitution in tourmaline. The Canadian Mineralogist, 33, 849858.Google Scholar
Nakamura, T. and Kubo, T. (1992) Tourmaline group crystals reaction with water. Ferroeledrics, 137, 14.Google Scholar
O'Keeffe, M. (1989) The prediction and interpretation of bond lengths in crystals. Structure and Bonding, 71, 161191.CrossRefGoogle Scholar
O'Keeffe, M. (1990) A method for calculating bond valences in crystals. Ada Crystallographica, A 46, 138142.Google Scholar
Robinson, K, Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rozhdestvenskaya, I.V., Vereshchagin, O.S., Frank-Kamenetskaya, O.V., Zolotarev, A.A. and Pekov, I.V. (2011) About crystal-chemical formula of chromdravite—mineral species of tourmaline. Proceedings of the Russian Mineralogical Society, 3, 9399.Google Scholar
Rozhdestvenskaya, I.V., Setkova, T.V., Vereshchagin, O.S., Shtukenberg, A.G. and Shapovalov, Yu.B. (2012) Refinement of the crystal structures of synthetic nickel-and cobalt-bearing tourmalines. Crystallography Reports, 57, 5763.CrossRefGoogle Scholar
Ruan, D., Zhang, L., Zhang, Z. and Xia, X. (2004) Structure and properties of regenerated cellulose/ tourmaline nanocrystal composite films. Journal of Polymer Science Part B: Polymer Physics, 42, 367373.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, 32, 751767.Google Scholar
Taran, M.N., Lebedev, A.S. and Platonov, A.N. (1993) Optical absorption spectroscopy of synthetic tourmalines. Physics and Chemistry of Minerals, 20, 209220.CrossRefGoogle Scholar
Vereshchagin, O.S, Rozhdestvenskaya, I.V, Frank-Kamenetskaya, O.V, Zolotarev, A.A. and Mashkovtsev, R.I. (2013) Crystal chemistry of Cu-bearing tourmalines. American Mineralogist, 98, 16101616.CrossRefGoogle Scholar
Vereshchagin, O.S, Rozhdestvenskaya, I.V, Frank-Kamenetskaya, O.V and Zolotarev, A.A. (2014) Ion substitutions and structural adjustment in Cr-bearing tourmalines. European Journal of Mineralogy, 26, 309321.CrossRefGoogle Scholar
Walker, N and Stuart, D. (1983) An empirical method for correcting diffractometer data for absorption effects. Ada Crystallographica, A 39, 158166.Google Scholar
Wang, Y., Yeh, J.T., Yue, T.J., Yao, R.X. and Shen, X.Y. (2006) Surface modification of superfine tourmaline powder with titanate coupling agent. Colloid Polymer Science, 284, 14651470.CrossRefGoogle Scholar
Wright, S.E., Foley, J.A. and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524531.CrossRefGoogle Scholar