Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T12:31:08.029Z Has data issue: false hasContentIssue false

Crystal chemistry of the variscite and metavariscite groups: Crystal structures of synthetic CrAsO4⋅2H2O, TlPO4⋅2H2O, MnSeO4⋅2H2O, CdSeO4⋅2H2O and natural bonacinaite, ScAsO4⋅2H2O

Published online by Cambridge University Press:  08 July 2020

Uwe Kolitsch*
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010Wien, Austria Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090Wien, Austria
Matthias Weil
Affiliation:
Institut für Chemische Technologien und Analytik, Bereich Strukturchemie, Technische Universität Wien, Getreidemarkt 9/164-SC, A-1060Wien, Austria
Vadim M. Kovrugin
Affiliation:
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, 199034St. Petersburg, Russia ICMCB-CNRS, Université de Bordeaux, Bordeaux INP, UMR 5026, 33600Pessac Cedex, France
Sergey V. Krivovichev
Affiliation:
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, 199034St. Petersburg, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Fersmana 14, 184209Apatity, Russia
*
*Author for correspondence: Uwe Kolitsch, Email: [email protected]

Abstract

We report the crystal structures of four synthetic members of the variscite group (space group type Pbca) and of bonacinaite, the first naturally occurring scandium arsenate member of the metavariscite group. All structures were determined using single-crystal X-ray intensity data. The following members were all synthesised under either mild hydrothermal conditions or by wet-chemical methods (<90°C). CrAsO4⋅2H2O (deep green): a = 8.894(2), b = 9.946(2), c = 10.206(2) Å and V = 902.8(3) Å3; R1 = 2.14%. Tl3+PO4⋅2H2O (colourless): a = 10.2848(7), b = 8.8578(6), c = 10.3637(7) Å and V = 944.14(11) Å3 (data at –173°C); R1 = 2.56%. MnSeO4⋅2H2O (pale pink): a = 10.441(2), b = 9.2410(18), c = 10.552(2) Å and V = 1018.1(3) Å3; R1 = 2.19%. A different method of preparation of MnSeO4⋅2H2O yielded crystals with very similar unit-cell parameters, a = 10.4353(5), b = 9.2420(5) and c = 10.5349(6) Å; R1 = 2.25%. CdSeO4⋅2H2O (colourless) has a = 10.481(1), b = 9.416(1), c = 10.755(1) Å and V = 1061.4(2) Å3; R1 = 1.53%. The thermal behaviour of the two selenate members was studied by a combination of DSC and TG, supplemented by PXRD. Bonacinaite (IMA2018-056), metavariscite-type natural (Sc,Al)(As,P)O4⋅2H2O (ideally ScAsO4⋅2H2O), crystallises in the space group P21/n, with a = 5.533(1), b = 10.409(2), c = 9.036(2) Å, β = 91.94(3)° and V = 520.11(18) Å3; R1 = 3.66%. The structural formula, supported by chemical analysis, is (Sc0.807(1)Al0.193)(As0.767(7)P0.233)O4⋅2H2O. All structures are based on frameworks built by corner-sharing of TO4 tetrahedra (T = P5+, As5+ or Se6+) with MO4(H2O)2 (M = Mn2+, Cd2+, Cr3+, Sc3+ or Tl3+) octahedra. The flexible frameworks are reinforced by partly bifurcated, strong to weak hydrogen bonds.

The crystal chemistry of all known synthetic and natural members of the variscite and metavariscite groups is discussed and compared, and the relative stabilities are evaluated. With the aid of the COMPSTRU program (Bilbao Crystallographic Server), a quantitative comparison of the crystal structures in both groups is given. Calculations of the structural and topological complexity reveal that the metavariscite structure type is structurally and topologically simpler than that of variscite. It is suggested that metavariscite and phosphosiderite are metastable kinetically stabilised phases, in contrast to thermodynamically stable variscite and strengite, respectively. The 3D frameworks of the members of both groups have been shown to be potential electrode materials for rechargeable Li ion batteries.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Allen, L.C. (1989) Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. Journal of the American Chemical Society, 111, 90039014.CrossRefGoogle Scholar
Arlidge, E.Z., Farmer, V.C., Mitchell, B.D. and Mitchell, W.A. (1963) Infrared, x-ray, and thermal analyses of some aluminum and ferric phosphates. Journal of Applied Chemistry (London), 13, 1727.CrossRefGoogle Scholar
Aroyo, M.I., Perez-Mato, J.M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. and Wondratschek, H. (2006) Bilbao Crystallographic Server I: Databases and crystallographic computing programs. Zeitschrift für Kristallographie, 221, 1527.Google Scholar
Bach, A., Fischer, D. and Jansen, M. (2013) Metastable phase formation of indium monochloride from an amorphous feedstock. Zeitschrift für Anorganische und Allgemeine Chemie, 639, 465467.CrossRefGoogle Scholar
Barresi, A.A., Kolitsch, U., Ciriotti, M.E., Ambrino, P., Bracco, R. and Bonacina, E. (2005) La miniera di manganese di Varenche (Aosta, Italia nord-occidentale): ardennite, arseniopleite, manganberzeliite, pirofanite, sarkinite, sursassite, thortveitite, nuovo As-analogo della metavariscite e altre specie minerali. Micro, 2005 (2), 81122 [in Italian].Google Scholar
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures. Pp. 3152 in: Structure and Bonding in Crystals II (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.CrossRefGoogle Scholar
Belsky, A., Hellenbrandt, M., Karen, V.L. and Luksch, P. (2002) New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallographica, B58, 364369.CrossRefGoogle Scholar
Bennett, J.M., Dytrych, W.J., Pluth, J.J., Richardson, J.W. Jr. and Smith, J.V. (1986) Structural features of aluminophosphate materials with aluminum/phosphorus = 1. Zeolites, 6, 349360.CrossRefGoogle Scholar
Bergerhoff, G., Berndt, M., Brandenburg, K. and Degen, T. (1999) Concerning inorganic crystal structure types. Acta Crystallographica, B55, 147156.CrossRefGoogle Scholar
Bolanz, R.M., Wierzbicka-Wieczorek, M., Giester, G., Göttlicher, J. and Steininger, R. (2016) Structural incorporation of As5+ into phosphosiderite by a strengite/scorodite-like arrangement. ChemistrySELECT, 1, 41524160.CrossRefGoogle Scholar
Borensztajn, J. (1965) Crystal structures of metavariscite and metastrengite. Comptes Rendus de l'Académie des Sciences, 261, 376378 [in French].Google Scholar
Borensztajn, J. (1966) Crystalline structure of metavariscite and metastrengite. Bulletin de la Société Française de Minéralogie et de Cristallographie, 89, 428438 [in French].CrossRefGoogle Scholar
Botelho, N.F., Roger, G., D'Yvoire, F., Moëlo, Y. and Volfinger, M. (1994) Yanomamite, InAsO4⋅2H2O, a new indium mineral from topaz-bearing greisen in the Goiás tin province, Brazil. European Journal of Mineralogy, 6, 245254.CrossRefGoogle Scholar
Brown, I.D. (1996) VALENCE: a program for calculating bond-valences. Journal of Applied Crystallography, 29, 479480.CrossRefGoogle Scholar
Bruker AXS (1997) SHELXTL, Version 5.1. Bruker AXS, Inc., Madison, WI 53719, USA.Google Scholar
Bruker AXS (1998 a) SMART, Version 5.0. Bruker AXS, Inc., Madison, WI 53719, USA.Google Scholar
Bruker AXS (1998 b) SAINT, Version 5.0. Bruker AXS, Inc., Madison, WI 53719, USA.Google Scholar
Bull, I., Young, V., Teat, S.J., Peng, L., Grey, C.P. and Parise, J.B. (2003) Hydrothermal Synthesis and structural characterization of four scandium phosphate frameworks. Chemistry of Materials, 15, 38183825.CrossRefGoogle Scholar
Cámara, F., Ciriotti, M.E., Kolitsch, U., Vignola, P., Hatert, F., Bittarello, E., Bracco, R. and Bortolozzi, G.M. (2018) Bonacinaite, IMA 2018-056. CNMNC Newsletter No. 45, October 2018, pages 1228–1229; Mineralogical Magazine, 82, 12251232.Google Scholar
Carron, M.K., Mrose, M.E. and Murata, K.J. (1958) Relation of ionic radius to structures of rare-earth phosphates, arsenates, and vanadates. American Mineralogist, 43, 985989.Google Scholar
Cempírek, J., Grew, E.S., Kampf, A.R., Ma, C., Novák, M., Gadas, P., Škoda, R., Vašinová-Galiová, M., Pezzotta, F., Groat, L.A. and Krivovichev, S.V. (2016) Vránaite, ideally Al16B4Si4O38, a new mineral related to boralsilite, Al16B6Si2O37, from the Manjaka pegmatite, Sahatany Valley, Madagascar. American Mineralogist, 101, 21082117.CrossRefGoogle Scholar
Chen, Z.-X., Weng, L.-H., Zhou, Y.-M., Zhang, H.-Y. and Zhao, D.-Y. (2002) Synthesis and structure of a new three-dimensional microporous indium arsenate. Huaxue Xuebao, 60, 305309 [in Chinese].Google Scholar
Chesnokov, B.V., Lotova, E.V., Pavlyuchenko, V.S., Nigmatulina, E.N., Usova, L.V., Bushmakin, A.R. and Nishanbaev, T.P. (1989) Svyatoslavite, CaAl2Si2O8 (orthorhombic), a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 118, 111114 [in Russian].Google Scholar
de la Flor, G., Orobengoa, D., Tasci, E., Perez-Mato, J.M. and Aroyo, M.I. (2016) Comparison of structures applying the tools available at the Bilbao Crystallographic Server. Journal of Applied Crystallography, 49, 653664.CrossRefGoogle Scholar
Deiseroth, H.J. and Müller-Buschbaum, H. (1973) Über Erdalkalimetalloxogallate. III. Untersuchung des Aufbaus von CaGa2O4. Zeitschrift für Anorganische und Allgemeine Chemie, 396, 157164 [in German].CrossRefGoogle Scholar
Delacourt, C., Poizot, P., Bonnin, D. and Masquelier, C. (2009) Lithium-insertion mechanism in crystalline and amorphous FePO4nH2O. Journal of the Electrochemical Society, 156, A595A605.CrossRefGoogle Scholar
Demassieux, N. (1945) Dehydration of the double selenate of nickel and potassium. Comptes rendus, 221, 557558 [in French].Google Scholar
Dick, S. (1997) Die Struktur von GaAsO4⋅2H2O: Ein neues Mitglied der Variscit-Familie. Zeitschrift für Naturforschung, B52, 13371340 [in German].CrossRefGoogle Scholar
Dollase, W.A. and Ross, C.R. (1993) Crystal structures of body-centered tetragonal tectosilicates: K1.14Mg0.57Si1.43O4, K1.10Zn0.55Si1.45O4, and K1.11Fe1.11Si0.89O4. American Mineralogist, 78, 627632.Google Scholar
Dowty, E. (2011) ATOMS V6.4.0 for Atomic-Structure Display. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663 USA.Google Scholar
Elton, N.J. (1996) Variscite and metavariscite from Gunheath china clay pit, St Austell, Cornwall. Mineralogical Magazine, 60, 671672.CrossRefGoogle Scholar
Eshchenko, L.S., Shchegrov, L.N., Pechkovskii, V.V. and Ustimovich, A.B. (1973) Crystal hydrates of trisubstituted iron(III) orthophosphate. Zhurnal Neorganicheskoi Khimii, 18, 909914 [in Russian].Google Scholar
Euler, H., Meents, A., Barbier, B. and Kirfel, A. (2003) Crystal structure of tetraaquamanganese(II) selenate monohydrate, Mn(H2O)4SeO4⋅H2O. Zeitschrift für Kristallographie – New Crystal Structures, 218, 910.CrossRefGoogle Scholar
Fanfani, L. and Zanazzi, P.F. (1966) Crystalline structure of metastrengite. Atti dell‘Accademia Nazionale dei Lincei. Rendiconti. Classe di scienze fisiche, matematiche e naturali, 40, 880889 [in Italian].Google Scholar
Fayos, J. and Salvador-Salvador, P. (1971) A systematic approximate method for the determination of structure factors from a powder diffractogram and its application to the solution of the structure of metavariscite. Journal of Applied Crystallography, 4, 159163.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2018) Bond-length distributions for ions bonded to oxygen: metalloids and post-transition metals. Acta Crystallographica, B74, 6378.Google Scholar
Goldsmith, J.R. (1953) A “simplexity principle” and its relation to “ease” of crystallization. Journal of Geology, 61, 439451.CrossRefGoogle Scholar
Harrison, W.T.A. (2000) Synthetic mansfieldite, AlAsO4⋅2H2O. Acta Crystallographica, C56, e421.Google Scholar
Hawthorne, F.C. (1976) The hydrogen positions in scorodite. Acta Crystallographica, B32, 28912892.CrossRefGoogle Scholar
Hong, Y.-S., Ryu, K.S., Park, Y.J., Kim, M.G., Lee, J.M. and Chang, S.H. (2002) Amorphous FePO4 as 3 V cathode material for lithium secondary batteries. Journal of Materials Chemistry, 12, 18701874.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Pp 123253 in: Phosphates (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, vol. 48. Mineralogical Society of America and the Geochemical Society, Washington DC.CrossRefGoogle Scholar
Huskić, I., Novendra, N., Lim, D.-W., Topić, F., Titi, H.M., Pekov, I.V., Krivovichev, S.V., Navrotsky, A., Kitagawa, H. and Friščić, T. (2019) Functionality in metal-organic framework minerals: proton conductivity, stability and potential for polymorphism. Chemical Science, 10, 49234929.CrossRefGoogle ScholarPubMed
Ilyushin, G.D. and Blatov, V.A. (2017) Symmetry and topology code of the cluster self-assembly of framework MT structures of alumophosphates AlPO4(H2O)2 (metavariscite and variscite) and Al2(PO4)2(H2O)3 (APC). Crystallography Reports, 62, 174184.CrossRefGoogle Scholar
Ivanov-Emin, B.N., Korotaeva, L.G., Moskalenko, V.I. and Ezhov, A.I. (1971) Scandium arsenates. Zhurnal Neorganicheskoi Khimii, 16, 29252928 [in Russian].Google Scholar
Kitahama, K., Kiriyama, R. and Baba, Y. (1975) Refinement of the crystal structure of scorodite. Acta Crystallographica, B31, 322324.CrossRefGoogle Scholar
Kleber, W. and Weiner, K.L. (1958) Comparative crystallographic studies of the orthorhombic phosphates and arsenates of the type Y(zO4)⋅2H2O. Neues Jahrbuch für Mineralogie, Abhandlungen, 90, 253284.Google Scholar
Klein, A. (1940) The selenates of the metals of the magnesium series. Annali di Chimica Applicata, 14, 263317.Google Scholar
Kniep, R. and Mootz, D. (1973) Metavariscite – a redetermination of its crystal structure. Acta Crystallographica, B29, 22922294.CrossRefGoogle Scholar
Kniep, R., Mootz, D. and Vegas, A. (1977) Variscite. Acta Crystallographica, B33, 263265.CrossRefGoogle Scholar
Kokkoros, P. (1939) Comparative x-ray studies of arsenates and selenates. Neues Jahrbuch für Mineralogie und Geologie (Ref. I), 1939, 252253.Google Scholar
Koleva, V. and Stoilova, D. (1997) Thermal dehydration of cobalt selenate hydrates. Thermochimica Acta, 296, 3136.CrossRefGoogle Scholar
Koleva, V. and Stoilova, D. (1999) DTA, DSC and X-ray studies on copper and manganese selenate hydrates. Thermochimica Acta, 342, 8995.CrossRefGoogle Scholar
Komissarova, L.N., Pushkina, G.Ya. and Khrameeva, N.P. (1971) Preparation and some properties of scandium arsenate dihydrate. Zhurnal Neorganicheskoi Khimii, 16, 15381541 [in Russian].Google Scholar
Komissarova, L.N., Pushkina, G.Ya., Khrameeva, N.P. and Teterin, E.G. (1973) Scandium arsenates. Zhurnal Neorganicheskoi Khimii, 18, 23162323 [in Russian].Google Scholar
Kovrugin, V.M., Aliev, A., Colmont, M., Mentré, O. and Krivovichev, S.V. (2016) Synthesis and crystal structure of Mn(SeO4)⋅2H2O, a new member of the variscite family of compounds. EMC2016, 2 nd European Mineralogical Conference, 11-15 September 2016, Rimini, Italy, abstract pp. 16–23.Google Scholar
Krivovichev, S.V. (2007) Crystal chemistry of selenates with mineral-like structures. IV. Crystal structure of Zn(SeO4)(H2O)2, a new compound with a mixed framework of the variscite type. Geology of Ore Deposits, 49, 542546.CrossRefGoogle Scholar
Krivovichev, S.V. (2009) Structural Crystallography of Inorganic Oxysalts. International Union of Crystallography Monographs on Crystallography No. 22, 320 pp.CrossRefGoogle Scholar
Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallographica, A68, 393398.CrossRefGoogle Scholar
Krivovichev, S.V. (2013a) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275326.CrossRefGoogle Scholar
Krivovichev, S.V. (2013b) Structural and topological complexity of zeolites: An information-theoretic analysis. Microporous and Mesoporous Materials, 171, 223229.CrossRefGoogle Scholar
Krivovichev, S.V. (2014) Which inorganic structures are the most complex? Angewandte Chemie International Edition, 53, 654661.CrossRefGoogle ScholarPubMed
Krivovichev, S.V., Shcherbakova, E.P. and Nishanbaev, T.P. (2012) The crystal structure of svyatoslavite and evolution of complexity during crystallization of a CaAl2Si2O8 melt: A structural automata description. The Canadian Mineralogist, 50, 585592.CrossRefGoogle Scholar
Krivovichev, S.V., Hawthorne, F.C. and Williams, P.A. (2017) Structural complexity and crystallization: the Ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite). Structural Chemistry, 28, 153159.CrossRefGoogle Scholar
Le Berre, J.-F., Gauvin, R. and Demopoulos, G.P. (2007) Synthesis, structure, and stability of gallium arsenate dihydrate, indium arsenate dihydrate, and lanthanum arsenate. Industrial and Engineering Chemistry Research, 46, 78757882.CrossRefGoogle Scholar
Loiseau, T., Paulet, C. and Férey, G. (1998) Crystal structure determination of the hydrated gallium phosphate GaPO4⋅2H2O, analog of variscite. Comptes Rendus de l'Académie des Sciences, Série IIc, 1, 667674.Google Scholar
Lukaszewski, G.M., Redfern, J.P. and Salmon, J.E. (1961) Arsenates. Part I. Preparative, phase-diagram, and other preliminary studies of the system chromium(III)-arsenic acid. Journal of the Chemical Society, 1961, 3943.CrossRefGoogle Scholar
Maier, A.I., Selivanova, N.M. and Terent'eva, L.A. (1965) Heat of formation of cobalt selenate. Zhurnal Fizicheskoi Khimii, 39, 17461750 [in Russian].Google Scholar
Majzlan, J. (2020) Processes of metastable-mineral formation in oxidation zones and mine waste. Mineralogical Magazine, 84, 367375.CrossRefGoogle Scholar
Majzlan, J., Dachs, E., Benisek, A., Plášil, J. and Sejkora, J. (2018) Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. European Journal of Mineralogy, 30, 259275.CrossRefGoogle Scholar
Masquelier, C. and Croguennec, L. (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chemical Reviews, 113, 65526591.CrossRefGoogle ScholarPubMed
Masquelier, C., Reale, P., Wurm, C., Morcrette, M., Dupont, L. and Larcher, D. (2002) Hydrated iron phosphates FePO4nH2O and Fe4(P2O7)3nH2O as 3 V positive electrodes in rechargeable lithium batteries. Journal of The Electrochemical Society, 149, A1037A1044.CrossRefGoogle Scholar
Masquelier, C., Morcrette, M., Reale, P. and Wurm, C. (2003) Hydrated Iron Phosphate Electrode Materials for Rechargeable Lithium Battery Cell Systems. US Patent: 2003/0064287 A1.Google Scholar
Mooney-Slater, R.C.L. (1961) X-ray diffraction study of indium phosphate dihydrate and isostructural thallic compounds. Acta Crystallographica, 14, 11401146.CrossRefGoogle Scholar
Mooney-Slater, R.C.L. (1966) The crystal structure of hydrated gallium phosphate of composition GaPO4⋅2H2O. Acta Crystallographica, 20, 526534.CrossRefGoogle Scholar
Moore, P.B. (1966) The crystal structure of metastrengite and its relationship to strengite and phosphophyllite. American Mineralogist, 51, 168176.Google Scholar
Nabar, M.A. and Paralkar, S.V. (1975) Thermal decomposition of some divalent metal selenates. Thermochimica Acta, 11, 187196.CrossRefGoogle Scholar
Otwinowski, Z., Borek, D., Majewski, W. and Minor, W. (2003) Multiparametric scaling of diffraction intensities. Acta Crystallographica, A59, 228234.CrossRefGoogle Scholar
Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B. (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 144, 11881194.CrossRefGoogle Scholar
Perchiazzi, N., Ondruš, P. and Skála, R. (2004) Ab-initio X-ray powder structure determination of parascorodite, Fe(H2O)2AsO4. European Journal of Mineralogy, 16, 10031007.CrossRefGoogle Scholar
Plášil, J. (2018) Structural complexity of uranophane and uranophane-β: Implications for their formation and occurrence. European Journal of Mineralogy, 30, 253257.CrossRefGoogle Scholar
Plášil, J., Petříček, V. and Majzlan, J. (2017) A commensurately modulated structure of parabutlerite, FeIIISO4(OH)⋅2H 2O. Acta Crystallographi ca, B73, 856862.Google Scholar
Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin, 1452, 456 pp.Google Scholar
Ronis, M. (1970) Chromium arsenate, CrAsO4: preparation and study of two hydrates and of the anhydrous compound. Comptes Rendus de l'Académie des Sciences, Série C, 271, 6466 [in French].Google Scholar
Ronis, M. and D'Yvoire, F. (1974) Trivalent metal arsenates. III. Preparation and study of the stoichiometric dihydrates MAsO4.2H2O (M = aluminum, gallium, chromium, iron) and the nonstoichiometric dihydrates M1-xH3xAsO4.2H2O. Bulletin de la Société Chimique de France, 1974, 7882 [in French].Google Scholar
Salvador Salvador, P. and Fayos, J. (1972) Structural relation between “Messbach-type” and “Lucin-type” variscites. American Mineralogist, 57, 3644.Google Scholar
Schindler, M., Joswig, W. and Baur, W.H. (1995) Preparation and crystal structures of the vanadium phosphates VPO4⋅2H2O and V5.12(PO4)4(OH)3.36(H2O)0.64⋅0.84H2O. European Journal of Solid State and Inorganic Chemistry, 32, 109120.Google Scholar
Schroffenegger, M., Eder, F., Weil, M., Stöger, B., Schwendtner, K. and Kolitsch, U. (2020) News about thallium arsenates(V). Journal of Alloys and Compounds, 820, 153369.CrossRefGoogle Scholar
Schwendtner, K. and Kolitsch, U. (2007 a) Gittinsite-type M 1+-M 3+-diarsenates (M 1+ = Li, Na; M 3+ = Al, Sc, Ga): insights into an unexpected isotypy and crystal chemistry of diarsenates. Mineralogical Magazine, 71, 249263.CrossRefGoogle Scholar
Schwendtner, K. and Kolitsch, U. (2007 b) Two new structure types: KFe3(AsO4)2(HAsO4)2 and K(H2O)M 3+(H1.5AsO4)2(H2AsO4) (M 3+ = Fe, Ga, In) – synthesis, crystal structure and spectroscopy. European Journal of Mineralogy, 19, 399409.CrossRefGoogle Scholar
Schwendtner, K. and Kolitsch, U. (2017) MIn(HAsO4)2 (M = K, Rb, Cs): three new hydrogenarsenates adopting two different structure types. Acta Crystallographica, E73, 15801586.Google Scholar
Schwendtner, K. and Kolitsch, U. (2018) (NH4)Ga(HAsO4)2 and TlAl(HAsO4)2 – two new RbFe(HPO4)2-type M +M 3+ arsenates. Acta Crystallographica, E74, 15041508.Google Scholar
Serezhkin, V.N., Kryuchkova, G.V. and Kazakevich, V.S. (2003) Coordination polyhedra ScXn (X = O, S, Se, Te) in crystal structures. Zhurnal Neorganicheskoi Khimii, 48, 13221330 [in Russian].Google Scholar
Sergeeva, A.V. (2016) To the question of variscite and metavariscite formation. Phase equilibria in the system Al2O3–H2O–P2O5. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 145, 101113 [in Russian].Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2002) SADABS Area-Detector Absorption Correction Program. Bruker AXS Inc., Madison, Wisconsin.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Smith, J.V. (1977) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. I. Perpendicular linkage from simple hexagonal net. American Mineralogist, 62, 703709.Google Scholar
Snyman, H.C. and Pistorius, C.W.F.T. (1963) Crystallographic data for NiSeO4 and its hydrates. Zeitschrift für Anorganische und Allgemeine Chemie, 324, 157161.CrossRefGoogle Scholar
Song, Y., Yang, S., Zavalij, P.Y. and Whittingham, M.S. (2002 a) Temperature-dependent properties of FePO4 cathode materials. Materials Research Bulletin, 37, 12491257.CrossRefGoogle Scholar
Song, Y., Zavalij, P.Y., Suzuki, M., Whittingham, M.S. (2002 b) New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties. Inorganic Chemistry, 41, 57785786.CrossRefGoogle ScholarPubMed
Spencer, E.C., Soghomonian, V. and Ross, N.L. (2015) Gallium arsenate dihydrate under pressure: elastic properties, compression mechanism, and hydrogen bonding. Inorganic Chemistry, 54, 75487554.CrossRefGoogle ScholarPubMed
Stoilova, D. and Koleva, V. (1995 a) X-ray diffraction study on MgSeO4⋅6H2O at elevated temperatures. Crystal Research and Technology, 30, 547551.CrossRefGoogle Scholar
Stoilova, D. and Koleva, V. (1995 b) Thermal dehydration of magnesium selenate hydrates. Thermochimica Acta, 255, 3338.CrossRefGoogle Scholar
Stoilova, D. and Koleva, V. (1997) TG, DTA, DSC and X-ray powder diffraction studies on some nickel selenate hydrates. Thermochimica Acta, 290, 8591.CrossRefGoogle Scholar
Strunz, H. and von Sztrokay, K. (1939) Isodimorphie zwischen Metavariscit, Variscit, Phosphosiderit und Strengit. Zentralblatt für Mineralogie und Geologie, Abteilung A, 1939, 272278 [in German].Google Scholar
Sugiyama, K., Yu, J., Hiraga, K. and Terasaki, O. (1999) Monoclinic InPO4⋅2H2O. Acta Crystallographica, C55, 279281.Google Scholar
Tang, X., Gentiletti, M.J. and Lachgar, A. (2002) Synthesis and crystal structure of indium arsenate and phosphate dihydrates with variscite and metavariscite structure types. Journal of Chemical Crystallography, 31, 4550.CrossRefGoogle Scholar
Taxer, K. and Bartl, H. (2004) On the dimorphy between the variscite and clinovariscite group: refined finestructural relationship of strengite and clinostrengite, Fe(PO4)⋅2H2O. Crystal Research and Technology, 39, 10801088.CrossRefGoogle Scholar
Wells, A.F. (1954) The geometrical basis of crystal chemistry. Part 2. Acta Crystallographica, 7, 545554.CrossRefGoogle Scholar
Wilk, H. (1959) Phosphosiderit und Strengit von Pleystein in Ostbayern. Acta Albertina Ratisbonensia, 23, 107170 [in German].Google Scholar
Woods, T.L. and Garrels, R.M. (1987) Thermodynamic Values at Low Temperature for Natural Inorganic Materials: An Uncritical Survey. Oxford University Press, New York–Oxford, 242 pp.Google Scholar
Xu, Y Koh, L.L., An, L.H., Xu, R.R. and Qiu, S.L. (1995) A comparative study of a novel microporous indium phosphate and other M(III)X(V)O4-type microporous materials. Journal of Solid State Chemistry, 117, 373378.CrossRefGoogle Scholar
Xu, Y., Zhou, G.-P. and Zheng, X.-F. (2007) Redetermination of iron(III) arsenate dihydrate. Acta Crystallographica, E63, i67i69.Google Scholar
Yang, H., Li, C., Jenkins, R.A., Downs, R.T. and Costin, G. (2007) Kolbeckite, ScPO4⋅2H2O, isomorphous with metavariscite. Acta Crystallographica, C63, i91i92.Google Scholar
Zaitsev, A.N., Zhitova, E.S., Spratt, J., Zolotarev, A.A. and Krivovichev, S.V. (2017) Isolueshite, NaNbO3, from the Kovdor carbonatite, Kola peninsula, Russia: Composition, crystal structure and possible formation scenarios. Neues Jahrbuch für Mineralogie, Abhandlungen, 194, 165173.CrossRefGoogle Scholar
Zoppi, M. and Pratesi, G. (2009) Rietveld refinement of a natural cobaltian mansfieldite from synchrotron data. Acta Crystallographica, E65, i6i7.Google Scholar
Supplementary material: File

Kolitsch et al. supplementary material

Kolitsch et al. supplementary material

Download Kolitsch et al. supplementary material(File)
File 444.6 KB