Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T21:48:09.708Z Has data issue: false hasContentIssue false

Crystal chemistry and nomenclature of rhodonite-group minerals

Published online by Cambridge University Press:  09 October 2019

Nadezhda V. Shchipalkina*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991Moscow, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126Pisa, Italy
Marco Pasero
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126Pisa, Italy
*
*Author for correspondence: Nadezhda V. Shchipalkina, Email: [email protected]

Abstract

This paper presents the nomenclature of the rhodonite group accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA). An overview of the previous studies of triclinic (space group P$\bar{1}$) pyroxenoids belonging to the rhodonite structure type, with a focus on their crystal chemistry, is given. These minerals have the general structural formula VIIM(5)VIM(1)VIM(2)VIM(3)VIM(4)[Si5O15]. The following dominant cations at the M sites are known at present: M(5) = Ca or Mn2+, M(1–3) = Mn2+; and M(4) = Mn2+ or Fe2+. In accordance with the nomenclature, the rhodonite group consists of three IMA-approved mineral species having the following the general chemical formulae: M(5)AM(1–3)B3M(4)C[Si5O15], where A = Ca or Mn2+; B = Mn2+; and C = Mn2+ or Fe2+. The end-member formulae of approved rhodonite-group minerals are as follows: rhodonite CaMn3Mn[Si5O15]; ferrorhodonite CaMn3Fe[Si5O15]; and vittinkiite MnMn3Mn[Si5O15].

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Aikawa, N. (1984) Lamellar structure of rhodonite and pyroxmangite intergrowth. American Mineralogist, 69, 270276.Google Scholar
Back, M.E. (2018) Fleischer's Glossary of Mineral Species. 12th Edition. The Mineralogical Record Inc., Tucson.Google Scholar
Camac, M.D. (1852) Analysis of fowlerite. American Journal of Science, 14, 418419.Google Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer Verlag, Cham, Switzerland.CrossRefGoogle Scholar
Chukhrov, F.V. (editor) (1981) Minerals. Volume 3. Part 2. Nedra Publishing, Moscow [in Russian].Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1978) Rock-Forming Minerals. V. 24, John Wiley and Sons Inc., NY.Google Scholar
Ford, W.E. and Bradley, W.M. (1913) Pyroxmangite, a new member of the pyroxene group and its alteration product, skemmatite. American Journal of Science, 186, 169174.CrossRefGoogle Scholar
Germar, H. (1819) Ueber die kohlenstoff - und kieselsauren Manganerze des Unterharzes. Journal für Chemie und Physik, 26, 108120.Google Scholar
Gossner, B. and Bruckl, K. (1928) Über strukturelle Beziehungen von Rhodonit zu anderen Silikaten. Centralblatt für Mineralogie, Geologie und Paläontologie, 1928, 316322.Google Scholar
Henderson, E.P. and Glass, J.J. (1936) Pyroxmangite, a new locality: identity of sobralite and pyroxmangite. American Mineralogist, 21, 273294.Google Scholar
Hietanen, A. (1938) On the petrology of Finnish quartzites. Bulletin de la Commission Géologique de Finlande, 122, 1119.Google Scholar
Jasche, C.F. (1817) Das Rothmanganerz in der Gegend von Elbingerode am Harz. Kleine Mineralogische Schriften, 1, 119.Google Scholar
Larsen, E.S. and Shannon, E.V. (1922) Notes on some new rhodonite specimens from Franklin Furnace, New Jersey. American Mineralogist, 9, 149152.Google Scholar
Leverett, P., Williams, P.A. and Hibbs, D.E. (2008) Ca-Mg-Fe-rich rhodonite from the Morro da Mina mine, Conselheiro Lafaiete, Minas Gerais, Brasil. The Mineralogical Record, 44, 149184.Google Scholar
Liebau, F., Hilmer, W. and Thilo, E. (1956) Ein neuer Kettentyp in der Kristallstruktur des Rhodonits [(Mn,Ca)SiO3]x. Naturwissenschaften, 43, 177178.Google Scholar
Liebau, F., Hilmer, W. and Lindemann, G. (1959) Über die Kristallstruktur des Rhodonits (Mn,Ca)SiO3. Acta Crystallographica, 12, 182187.CrossRefGoogle Scholar
Mamedov, H.S. (1958) The crystal structure of rhodonite. Doklady Akademii Nauk AzSSR, 14, 445450 [in Russian].Google Scholar
Mikheev, V.I. and Dubinina, V.N. (1948) Materials to X-ray handbook of minerals. Zapiski Vsesouznogo Mineralogicheskogo Obshchestva, 77, 125135 [in Russian].Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2019) NEWSLETTER 49. New minerals and nomenclature modifications approved in 2019. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC). Mineralogical Magazine, 83, 479483, p. 483.CrossRefGoogle Scholar
Nagashima, M., Armbruster, T., Kolitsch, U. and Pettke, T. (2014 a) The relation between Li – Na substitution and hydrogen bonding in five-periodic single-chain silicates nambulite and marsturite: a single-crystal X-ray study. American Mineralogist, 99, 14621470.CrossRefGoogle Scholar
Nagashima, M., Mitani, K. and Akasaka, M. (2014 b) Structural variation of babingtonite depending on cation distribution at the octahedral sites. Mineralogy and Petrology, 108, 287301.CrossRefGoogle Scholar
Narita, H., Koto, K. and Morimoto, N. (1977) The crystal structures of MnSiO3 polymorphs (rhodonite- and pyroxmangite-type). Mineralogical Journal of Sapporo, 8, 329342.CrossRefGoogle Scholar
Nelson, W.R. and Griffen, D.T. (2005) Crystal chemistry of Zn-rich rhodonite (“fowlerite”). American Mineralogist, 90, 969983.CrossRefGoogle Scholar
Nordenskiöld, A.E. (1863) Beskrifning öfver de i Finland funna mineralier. Helsingfors, P. Th. Stolpes förlag (2nd edition). [in Swedish].Google Scholar
Ohashi, Y. and Finger, L.W. (1975) Pyroxenoids: a comparison of refined structures of rhodonite and pyroxmangite. Carnegie Institution of Washington Year Book, 74, 564569.Google Scholar
Palache, C., Berman, H. and Frondel, C. (1944) Dana's System of Mineralogy, 7th edition. John Willey, NY.Google Scholar
Pasero, M. (2019) The New IMA List of Minerals. http://cnmnc.main.jp/Google Scholar
Peacor, D.R. and Buerger, M.J. (1962) Determination and refinement of the crystal structure of bustamite, CaMnSi2O6. Zeitschrift für Kristallographie, 117, 331343.CrossRefGoogle Scholar
Peacor, D.R., Essene, E.J., Brown, P.E. and Winter, G.A. (1978) The crystal chemistry and petrogenesis of a magnesian rhodonite. American Mineralogist, 63, 11371142.Google Scholar
Peacor, D.R. and Niizeki, N. (1963) The redetermination and refinement of the crystal structure of rhodonite. (Mn,Ca)SiO3. Zeitschrift für Kristallographie, 119, 98116.CrossRefGoogle Scholar
Pertlik, F. and Zahiri, R. (1999) Rhodonite with a low calcium content: crystal structure determination and crystal chemical calculations. Monatshefte für Chemie, 130, 257265.Google Scholar
Perutz, M. (1937) ‘Iron-rhodonite’ (from slag) and pyroxmangite and their relation to rhodonite. Mineralogical Magazine, 24, 573576.CrossRefGoogle Scholar
Roberts, W.L., Campbell, T.J. and Rapp, G.R. (1992) Encyclopedia of Minerals. 2nd Edition, Van Nostrand Reinhold, New York.Google Scholar
Ross, C.S. and Kerr, P.F. (1932) The manganese minerals of a vein near Bald Knob, North Carolina. American Mineralogist, 17, 118.Google Scholar
Russel, A. (1946) On rhodonite and tephroite from Treburland manganese mine, Alternum, Cornwall and rhodonite from other localities in Cornwall and Devonshire. Mineralogical Magazine, 27, 221235.CrossRefGoogle Scholar
Shchipalkina, N.V., Chukanov, N.V., Pekov, I.V., Aksenov, S.M., McCammon, C., Belakovskiy, D.I., Britvin, S.N., Koshlyakova, N.N., Schafer, C., Scholz, R. and Rastsvetaeva, R.K. (2017) Ferrorhodonite CaMn3Fe[Si5O15], a new mineral species from Broken Hill, New South Wales, Australia. Physics and Chemistry of Minerals, 44, 323334.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Ksenofontov, D.A., Chukanov, N.V., Belakovskiy, D.I., and Koshlyakova, N.N. (2019 a) Dalnegorskite, Ca5Mn(Si3O9)2, a new pyroxenoid of the bustamite structure type, a rock-forming mineral of calcic skarns of the Dalnegorskoe boron deposit (Primorskiy Kray, Russia). Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 148, 6175 [in Russian].Google Scholar
Shchipalkina, N.V., Pekov, I.V., Chukanov, N.V., Zubkova, N.V., Belakovskiy, D.I., Britvin, S.N. and Koshlyakova, N.N. (2019 b) Vittinkiite, IMA 2017-082a. CNMNC Newsletter No. 51. Mineralogical Magazine, 83, doi: 10.1180/mgm.2019.58.Google Scholar
Shepard, C.U. (1832) Sketch of the mineralogy and geology of the counties of Orange, N.Y., and Sussex, N.J. American Journal of Science, 21, 321334.Google Scholar
Sundius, N. (1930) Iron-rhodonite from Tuna Hästberg. Geologiska Föreningen i Stockholm Förhandlingar, 52, 403406.CrossRefGoogle Scholar
Sundius, N. (1931) On the triclinic manganiferous pyroxenes. American Mineralogist, 16, 411–429, 488518.Google Scholar
Suzaki, Y. (1963) Pyroxmangite, rhodonite and bustamite series minerals. Geoscience Magazine, 14, 7287 [in Japanese with English abstract]Google Scholar