Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T22:43:59.893Z Has data issue: false hasContentIssue false

Cossaite, (Mg0.5,☐)Al6(SO4)6(HSO4)F6·36H2O, a new mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy

Published online by Cambridge University Press:  05 July 2018

F. Demartin*
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, via G. Venezian 21, I-20133 Milano, Italy
C. M. Gramaccioli
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, via G. Venezian 21, I-20133 Milano, Italy
I. Campostrini
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, via G. Venezian 21, I-20133 Milano, Italy
C. Castellano
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, via G. Venezian 21, I-20133 Milano, Italy
*

Abstract

Cossaite, ideally (Mg0.5,☐)Al6(SO4)6(HSO4)F6·36H20, was found in the altered pyroclastic breccia of an active fumarole (T about 350°C) located at the rim of the La Fossa crater, Vulcano Island, Aeolian archipelago, Sicily, Italy. Cossaite is trigonal, space group R3̄, with a = 22.010(2), c = 9.238(1) Å, V = 3875.6(6) Å3, Z = 3. It forms stout prismatic hexagonal crystals up to 100 μm in size, terminated by rhombohedral faces, and is associated with thermessaite, vlodavetsite, sassolite and salammoniac. Cossaite is colourless to white, the streak is white and the lustre vitreous. It is not fluorescent in either long-wave or short-wave ultraviolet radiation. The calculated density is 2.075 g cm–3. The mean refractive index nobs is 1.49(1) (589 nm). Chemical analysis gave MgO 1.4, A12O3 19.5, SO3 34.7, F 5.7, (H2O 40.85, from structure refinement), O=F –2.4, total 99.75 wt.%, corresponding to the empirical formula Mg0.56Al6.19S7.01H73.37F4.85O65.15 calculated on the basis of 70 oxygen plus fluorine atoms. The strongest six lines in the X-ray powder diffraction pattern [dobs(Å) (I) (hkl)] are: 4.15 (100) (140), 3.87 (70) (32̄2), 11.00 (50) (110), 4.58 (25) (131), 2.770 (20) (3̄33), 2.166 (20) (1̄8̄1). The crystal structure was refined to a final R index of 0.0349. It contains octahedral [A1(H2O)5F]2+ cations and sulphate anions interacting via hydrogen bonds to form channels running along [001], where disordered [Mg(H2O)6]2+ cations and hydrogensulphate anions are hosted.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 197-.Google Scholar
Campostrini, I., Demartin, F., Gramaccioli, C.M. and Russo, M. (2011) Vulcano. Tre secoli di mineralogia. Associazione Micro-mineralogica Italiana, Cremona, Italy, 344 pp.Google Scholar
Carobbi, G. and Cipriani, C. (1952) Ralstonite e bisolfato sodico (matteuccite) fra i prodotti delle fumarole vesuviane. Rendiconti Accademia dei Lincei, 12, 23-29.Google Scholar
Catti, M., Ferraris, G. and Ivaldi, G. (1979) A very short, and asymmetrical, hydrogen bond in the structure of Na3H(SO4)2 and S–OH vs O–H···O correlation. Acta Crystallographica, B35, 529-.Google Scholar
Cossa, A. (1881) Ricerche chimiche sui minerali e roccie dell’Isola di Vulcano. Atti della Reale Accademia dei Lincei, serie III, Rendiconti della Classe di Scienze Fisiche, Matematiche, Naturali, 2, 14 pp.Google Scholar
Cossa, A. (1882) Sulla hieratite, nuova specie mineralogica. Transunti dell’Accademia dei Lincei, serie III, 6, 141-142.Google Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Orlandi, P. (2008) Thermessaite K2[AlF3|SO4], a new ino-aluminofluoride-sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 46, 693-700.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Pilati, T. (2010a) Aiolosite, Na2(Na2Bi)(SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy. American Mineralogist, 95, 382-385.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010b) Adranosite (NH4)4NaAl2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 315-321.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010c) Pyracmonite (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 307-313.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837-838.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1984) X–OH and O–H–O bond lengths in protonated oxoanions. Acta Crystallographica, B40, 1-6.Google Scholar
Grice, J.D., Gault, R.A. and Chao, G.Y. (1995) Reederite-(Y), a new sodium rare-earth carbonate mineral with a unique fluorosulfate anion. American Mineralogist, 80, 1059-1064.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1-112 in: Sulfate Minerals – Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, B.K., editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America, Washington DC, and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65-77.CrossRefGoogle Scholar
Leclaire, A., Ledèsert, M., Monier, J.C., Daoud, A. and Damak, M. (1985) Structure du disulfate acide de triammonium. Une redétermination. Relations des chaïnes de liaisons hydrogéne avec la morphologie et la conductivité electrique. Acta Crystallographica, B41, 213-.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility index and its application. The Canadian Mineralogist, 19, 441-450.Google Scholar
Payan, F. and Haser, R. (1976) On the hydrogen bonding in potassium hydrogen sulphate. Comparison with a previous crystal structure determination. Acta Crystallographica, B32, 187-.Google Scholar
Schaller, W.T. and Stevens, R.E. (1941) The validity of paragonite as a mineral species. American Mineralogist, 26, 541-545.Google Scholar
Sheldrick, G.M. (2000) SADABS Area-Detector Absorption Correction Program. Bruker AXS, Madison, Wisconsin, USA.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 122-.Google Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, 9th edition. E. Schweizerbart’sche Verlaagsbuchhandlung, Stuttgart, Germany, 870 pp.Google Scholar