Published online by Cambridge University Press: 05 July 2018
Almandine- and grossular-rich garnet occurs as both a coronitic and non-coronitic phase in ferruginous, Grenvillian (c. 1050 Ma) granitoid rocks of the composite Potato Hill pluton of the Long Range Inlier, Newfoundland. The country rock includes garnetiferous gneiss, but garnets in the pluton are compositionally distinct (higher Ca and Mn, lower Mg), so none are interpreted as xenocrysts from the Long Range gneiss complex.
Coronal garnet, quartz and hornblende separate primary pyroxene, ilmenite and hornblende from feldspar in two-pyroxene charnockite. Balanced mass-transfer reactions based on microprobe data and modes for the pyroxene-centred corona structures suggest that corona sites gained Fe and lost Na. The flux of Fe apparently controlled corona growth in the charnockite. The corona structures are attributed to subsolidus cooling of the pluton rather than to a metamorphic overprint because the coronas are obliterated in high strain zones cutting the charnockite. Temperature of formation is constrained at c. 775–630°C by two-pyroxene and garnet-hornblende thermometry. Compositionally-similar coronas in rare, Fe-rich enderbite of the Long Range gneiss complex probably formed during cooling after early, high-grade metamorphism or following the regional emplacement of the Grenvillian plutons.
Non-coronitic garnets occur in equigranular and megacrystic hornblende-biotite granite. Garnets in the equigranular granite are large, well-formed, and in some instances are associated with compositional layering of probable igneous origin. These garnets are enriched in grossular (XCa = 0.28), and are therefore interpreted as phenocrysts crystallized at high pressure (>9 kbar?). They would nevertheless have been stabilized to lower pressures by their moderate spessartine content (XMn = 0.13).
Garnets in foliated megacrystic granite form tiny crystals depleted in Fe and Mg, and enriched in Mn and Ca, and in these respects are similar to garnet in deformed charnockite. These garnets are therefore interpreted to have formed (or re-equilibrated) during the late Grenvillian deformation. Garnet is absent in relatively magnesian Grenvillian granites (bulk XFe2+ = 0.50–0.85) elsewhere in the inlier. The restriction of garnet to the Potato Hill pluton (bulk XFe2+ = 0.88–0.94) therefore testifies to bulk compositional controls on the formation of both magmatic and subsolidus garnet in this intrusion.
Present address: Department of Geological Sciences, McGill University, Montreal, Quebec, Canada H3A 2A7