Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T06:57:43.292Z Has data issue: false hasContentIssue false

Compositional variation of turquoise-group minerals from the historical collection of the Real Museo Mineralogico of the University of Naples

Published online by Cambridge University Press:  26 January 2018

Manuela Rossi*
Affiliation:
Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Università di Napoli Federico II, Largo S. Marcellino 10, 80134 Naples, Italy Centro Musei delle Scienze Naturali e Fisiche, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy
Rosanna Rizzi
Affiliation:
Istituto di Cristallografia, CNR, Via Amendola 122/o, 70126 Bari, Italy
Alessandro Vergara
Affiliation:
Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso di Monte Sant’Angelo, 80126, Naples, Italy
Francesco Capitelli
Affiliation:
Istituto di Cristallografia, CNR, Via Salaria Km 29.300, 00016 Monterotondo, RomeItaly
Angela Altomare
Affiliation:
Istituto di Cristallografia, CNR, Via Amendola 122/o, 70126 Bari, Italy
Fabio Bellatreccia
Affiliation:
Dipartimento di Scienze, Università di Roma 3, Largo S. Leonardo Murialdo 1, 000146, Rome, Italy
Michele Saviano
Affiliation:
Istituto di Cristallografia, CNR, Via Amendola 122/o, 70126 Bari, Italy
Rosaria M. Ghiara
Affiliation:
Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Università di Napoli Federico II, Largo S. Marcellino 10, 80134 Naples, Italy Centro Musei delle Scienze Naturali e Fisiche, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy
*

Abstract

Five turquoise samples, belonging to the XVII century historical collection of the Real Museo Mineralogico (University of Naples Federico II), were investigated by a multi-methodological approach based on powder X-ray diffraction, electron microprobe analysis in wavelength-dispersive spectroscopy mode, backscattered electron images from scanning electron microscopy in energy-dispersive spectroscopy mode, laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared and Raman spectroscopy.

The samples originate from Sinai (Egypt), Santa Fè S. Miguel (New Mexico), Saxony (Germany), Montebras Creuse (France) and Nishapur (Khorassan, Iran) and display different mineralogical compositions and various mineral associations. The study has shown the presence of: (1) four minerals of the turquoise group: turquoise, faustite, chalcosiderite and planerite; (2) other phosphates from different groups: wavellite, crandallite, goyazite, gorceixite, variscite, metavariscite, fluorapatite; and (3) other minerals: voltaite, adularia and quartz.

The present investigation is intended to show the mineralogical and geochemical variability of the samples with particular attention to the mineralogical parageneses, textural analyses and trace-element concentrations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdu, Y.A., Hull, S.K., Fayek, M. and Hawthorne, F.C. (2011) The turquoise-chalcosiderite Cu(Al,Fe3+)6 (PO4)4(OH)8·4H2O solid-solution series: A Mössbauer spectroscopy, XRD E.P., and FTIR study. American Mineralogist, 96, 14331442.CrossRefGoogle Scholar
Alfè, M., Gargiulo, V., Di Capua, R., Chiarella, F., Rouzaud, J.N., Vergara, A. and Ciajolo, A. (2012) Wet chemical method for making graphene-like films from carbon black. ACS Applied Materials & Interfaces, 4, 44914498.Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A.G. G. and Rizzi, R. (2015) QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD. Journal of Applied Crystallography, 48, 598603.CrossRefGoogle Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1990) Voltaite. Handbook of Mineralogy. Mineral Data Publishing, Tucson Arizona, USA.Google Scholar
Bart, A.R. (1948) On rashleighite, a new mineral from Cornwall, intermediate between turquoise and chalcosiderite. Mineralogical Magazine, 902, 353358.Google Scholar
Blanchard, F. (1972) Physical and chemical data for crandallite from Alachua County, Florida. American Mineralogist, 57, 473484.Google Scholar
Blanchard, F. (1981) Variscite and strengite X-ray powder data. In: JCPDS Grant-in-Aid report. Cards 33-33 and 33-667.Google Scholar
Calas, G., Galoisy, L. and Kiratisin, A. (2005) The origin of the green color of variscite. American Mineralogist, 90, 984990.CrossRefGoogle Scholar
Capitelli, F., Chita, G., Cavallo, A., Bellatreccia, F. and Della Ventura, G. (2011) Crystal-structure of whiteite- (CaFeMg) from Crosscut Creek, Canada. Zeitschrift für Kristallographie, 226, 731738.CrossRefGoogle Scholar
Capitelli, F., Chita, G., Ghiara, M.R. and Rossi, M. (2012) Crystal chemical investigation of Fe3(PO4)2·8H2O vivianite minerals. Zeitschrift für Kristallographie, 227, 92101.CrossRefGoogle Scholar
Capitelli, F., Saviano, M., Ghiara, M.R. and Rossi, M. (2014a) Crystal chemical investigation of Al2(PO4) (OH)3 augelite from Rapid Creek, Yukon, Canada. Zeitschrift für Kristallographie, 229, 816.Google Scholar
Capitelli, F., Della Ventura, G., Bellatreccia, F., Sodo, A., Saviano, M., Ghiara, M.R. and Rossi, M. (2014b) Crystal-chemical study of wavellite from Zbirov, Czech Republic. Mineralogical Magazine, 78, 10571070.Google Scholar
Čejka, J., J., Sejkora, Macek, I., Malíková, R., Wang, L., Scholz, R., Xi, Y. and Frost, R.L. (2015) Raman and infrared spectroscopic study of turquoise minerals. Spectrochimica Acta A, 149, 173–82.CrossRefGoogle ScholarPubMed
Chen, Q., Yin, Z., Qi, L. and Xiong, Y. (2012) Turquoise from Zhushan County, Hubei Province, China. Gems & Gemology, 48, 198204.CrossRefGoogle Scholar
Cid-Dresdner, H. (1965) Determination and refinement of the crystal structure of turquois, CuAl6(PO4) (OH)8(H2O)4. Zeitschrift für Kristallographie, 121, 87113.CrossRefGoogle Scholar
Cid-Dresdner, H. and Villarroel, H.S. (1972) Crystallographic study of rashleighite, a member of the turquoise group. American Mineralogist, 57, 16811691.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species. Springer Geochemistry/Mineralogy, [p. 1726].CrossRefGoogle Scholar
Dill, H.G. (2001) The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth-Science Reviews, 53, 3593.CrossRefGoogle Scholar
Disbrow, A.E. and Stoll, W.C. (1957) Mineral Deposits. Geology of the Cerrillos Area, Santa Fe County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin 48 [First printing 1957, reprinted 1980].Google Scholar
Down, R.T. and Hall-Wallace, M. (2003) The American Mineralogist crystal structure database. American Mineralogist, 88, 247250.Google Scholar
Dudoignon, P., Beaufort, D. and Meunier, A. (1988) A hydrothermal and supergene alterations in the granitic cupola of Montebras, Creuse, France. Clays and Clay Minerals, 36, 505520.CrossRefGoogle Scholar
El Aassy, I.E., El Galy, M.M., Nada, A.A., El Feky, M.G., Abd El Maksoud, T.M., Talaat, S.M. and Ibrahim, E.M. (2011) Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rocks and their environmental impact, southwestern Sinai, Egypt. Journal of Radioanalytical and Nuclear Chemistry, 289, 173184.CrossRefGoogle Scholar
El Reedy, M.W., Muhdy, M.A., El Aassy, I.E. and Dabbour, G.A. (1988) Geochemical studies of some uraniferous sedimentary rock varieties of west central Sinai, Egypt. Pp. 224229 in: Proceedings of the 4th Conference of Nuclear Sciences and Applications. The Egyptian Society of Nuclear Sciences and Application, Cairo.Google Scholar
El Sharkawi, M.A., El Aref, M.M. and Abdel Motelib, A. (1990) Manganese deposits in a Carboniferous paleokarst profile, Urn Bogma region, west-central Sinai, Egypt. Mineralium Deposita, 25, 3443.CrossRefGoogle Scholar
Erd, R.C., Foster, M.D. and Proctor, P.D. (1953) Faustite, a new mineral, the zinc analogue of turquois. American Mineralogist, 38, 964972.Google Scholar
Foord, E.E. and Taggart, J.E. Jr. (1998) A reexamination of the turquoise group: the mineral aheylite, planerite (redefined), turquoise and coeruleolactite. Mineralogical Magazine, 62, 93111.CrossRefGoogle Scholar
Frost, R.L., Reddy, B.J., Martens, W.N. and Weier, M. (2006) The molecular structure of the phosphate mineral turquoise – a Raman spectroscopic study. Journal of Molecular Structure, 788, 224231.CrossRefGoogle Scholar
Frost, R.L., Xi, Y., Scholz, R. and de Brito Ribeiro, C.A. (2013) The molecular structure of the phosphate mineral chalcosiderite – A vibrational spectroscopic study. Spectrochimica Acta A, 111, 2430.CrossRefGoogle ScholarPubMed
Giuseppetti, G., Mazzi, F. and Tadini, C. (1989) The crystal structure of chalcosiderite CuFe6(PO4)4(OH)8(H2O)4. Neues Jahrbuch fur Mineralogie-Monatshefte, 227239.Google Scholar
Gravier, F. (2006) La Creuse 19001920. Editions de Borée, 53 rue Fernand-Forest Romagnat, France [p. 54].Google Scholar
Hull, S., Fayek, M., Mathien, F.J., Shelley, P. and Roler Durand, K. (2008) A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes. Journal of Archaeological Science, 35, 13551369.CrossRefGoogle Scholar
Hyršl, J. (2011) Variscite from Peru. Gems & Gemology, 47, 234256.Google Scholar
International Centre for Diffraction Data (2014) 12 Campus Boulevard Newtown Square P., USA.Google Scholar
Jentzsch, P.V., Kampe, B., Ciobotă, V., Rosch, P. and Popp, J. (2013) Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochimica Acta A, 115, 697708.CrossRefGoogle Scholar
Kniep, R., Mootz, D. and Vegas, A. (1977) Variscite. Acta Crystallographica Section B, 33, 263265.CrossRefGoogle Scholar
Kolitsch, U. and Giester, G. (2000) The crystal structure of faustite and its copper analogue turquoise. Mineralogical Magazine, 64, 905913.CrossRefGoogle Scholar
Kong, W.G., Wang, A., Freeman, J.J. and Sobron, P. (2011) A comprehensive spectroscopic study of synthetic Fe2+, Fe3+, Mg2+ and Al3+ copiapite by Raman, XRD L.B., MIR and vis-NIR. Journal of Raman Spectroscopy, 42, 11201129.CrossRefGoogle Scholar
Lacroix, A. (1901) Minéralogie de la France et de ses Colonies. Tome 3, 1ème partie, pp. 228229. Ch. Béranger, Paris.Google Scholar
Lacroix, A. (1910) Minéralogie de la France et de ses Colonies. Tome 4, 2ème partie, p.530. Ch. Béranger, Paris.Google Scholar
Larsen, E.S. (1942) The mineralogy and paragenesis of the variscite nodules from near Fairfield, Utah. Part 3. American Mineralogist, 27, 441451.Google Scholar
Magaritz, M. and Brenner, I.B. (1979) The geochemistry of a lenticular manganese-ore deposit (Um Bogma, Southern Sinai). Mineralium Deposita, 14, 113.CrossRefGoogle Scholar
Malcherek, T., Bindi, L., Dini, M., Ghiara, M.R., Molina, Donoso A., Nestola, F., Rossi, M. and Schlüter, J. (2014) Tondiite Cu3Mg(OH)6Cl2 the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583590.CrossRefGoogle Scholar
Meinrath, A., Schneider, P. and Meinrath, G. (2003) Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany. Journal of Environmental Radioactivity, 64, 175193.CrossRefGoogle ScholarPubMed
Mereiter, K. (1972) Die Kristallstruktur des Voltaits, K2Fe2þ 5 Fe3þ 3 Al[SO4]12·18H2O. Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 185202.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.S. (1995) Composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Northrop, S.A. (1944) Minerals of New Mexico, Albuquerque. University of New Mexico Press U.A. pp. 294.Google Scholar
Onac, B.P., Kearns, J., Breban, R. and Pânzaru, S.C. (2004) Variscite (AlPO4·2H2O) from Cioclovina cave (Sureanu Mountains, Romania): a tale of a missing phosphate. Studia Universitatis Babeş-Bolyai, Geologia X.I., 314.CrossRefGoogle Scholar
Odriozola, C.P., Linares Catela, J.A., Hurtado, V. (2010) Variscite source and source analysis: testing assumptions at Pico Centeno (Encinasola, Spain). Journal of Archaeological Science, 37, 3146–57.CrossRefGoogle Scholar
Oxford Instruments (2006) INCA, The microanalysis suite issue 17a + SP1, Version 4.08. Oxford Instruments Analysis Ltd, Oxfordshire, UK.Google Scholar
Pearce, J.A. and Cann, J.R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, 290300.CrossRefGoogle Scholar
Pirard, C., Hatert, F. and Fransolet, A.M. (2007) Alteration Sequences of Aluminium Phosphates from Montebras Pegmatite, Massif Central. France Granitic Pegmatites: The State of the Art – International Symposium. 612 May 2007, Porto, Portugal.Google Scholar
Pogue, J.E. (1916) The Turquoise: A Study of its History, Mineralogy, Geology, Ethnology, Archaeology, Mythology, Folkore, and Technology. Memoirs of National Academy of Sciences, XII-II. Washington.Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3l–75 in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.Google Scholar
Reddy, B.J., Frost, R.L., Weier, M.L. and Martens, W.N. (2006) Ultraviolet-visible, near infrared and mid infrared reflectance spectroscopy of turquoise. Near Infrared Spectroscopy, 14, 241250.CrossRefGoogle Scholar
Ross, S.D. (1974) Phosphates and other oxy-anions of Group V. Pp. 383422 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society Monograph, 4. Mineralogical Society, London.CrossRefGoogle Scholar
Rossi, M., Ghiara, M.R., Chita, G. and Capitelli, F. (2011) Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex. American Mineralogist, 96, 18281837.CrossRefGoogle Scholar
Segev, A. (1984) Gibbsite mineralization and its genetic implication for the Um Bogma manganese deposit, Southwestern Sinai. Mineralium Deposita, 19, 5462.CrossRefGoogle Scholar
Sejkora, J., Škoda, R., Ondruš, P., Beran, P. and Sűsser, C. (2006) Mineralogy of phosphates accumulation in the Huber stock, Krásno ore district, Slavkovský les area, Czech Republic. Journal of the Czech Geological Society, 51, 103147.Google Scholar
Shortland, A., Rogers, N. and Eremin, K. (2007) Trace element discriminants between Egyptian and Mesopotamian Late Bronze Age glasses. Journal of Archaeological Science, 34, 781789.CrossRefGoogle Scholar
Štemprok, M. (1993) Magmatic Evolution of the Krušńe Hory-Erzgebirge Batholith. Zeitschrift für Geologische Wissenschaften, 21, 237245.Google Scholar
Tiepolo, M., Bottazzi, P., Palenzona, M. and Vannucci, R. (2003) A laser probe coupled with ICP-double focusing sector field mass spectrometer for in situ analysis of geological samples and U-Pb dating of zircon. Canadian Mineralogist, 41, 259272.CrossRefGoogle Scholar
Velichkin, V.I. and Vlasov, B.P. (2011) Domal Structures and Hydrothermal Uranium Deposits of the Erzgebirge, Saxony, Germany. Geology of Ore Deposits, 53, 7483.CrossRefGoogle Scholar
Ventruti, G., Schingaro, E., Monno, A., Lacalamita, M., Della Ventura, G., Bellatreccia, F., Cuocci, C., Rossi, M. and Capitelli, F. (2016) Structure refinement and vibrational spectroscopy of vauxite from the type locality, Llallagua (Bolivia). Canadian Mineralogist, 54, 163176.CrossRefGoogle Scholar