Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T23:26:09.295Z Has data issue: false hasContentIssue false

Composition and structural state of coexisting feldspars, Salton Sea geothermal field

Published online by Cambridge University Press:  05 July 2018

S. Douglas McDowell*
Affiliation:
Department of Geology and Geological Engineering, Michigan Technological University, Houghton, MI 49931, USA

Abstract

Active metamorphism of fine grained sandstone in the c.16000 year old Salton Sea geothermal system has produced a suite of chemically equilibrated coexisting authigenic alkali feldspars and re-equilibrated detrital feldspars in the 250–360°C temperature range. At c.335°C the average compositions, 2 Vs, and (t1o+t1m) and Z ordering parameters of coexisting authigenic feldspars are [Or0.52Ab97.40An2.08, 2Vx = 91.3±4.8, (t1o + t1m) = 0.89±0.05, Z = 0.79±0.09], and [Or94.42 Ab5.10An0.48, 2Vx = 70, (t1o + t1m) = 0.90, Z = 0.81]. At c.360°C authigenic albite becomes more An-rich and less ordered [Or1.21Ab92.83An5.97, 2Vx = 87.5±3.4, (t1o + t1m) = 0.85±0.03, Z = 0.70±0.07] and K-feldspar is no longer stable. Detrital plagioclase (An up to 40%) is preserved metastably to temperatures up to c.190°C in strongly carbonate-cemented sandstone which forms part of a geothermally produced permeability cap. It undergoes rapid alkali exchange at temperatures near 200°C, and by 250°C no plagioclase with An-content over 12% is observed. At > 250°C authigenic and most detrital alkali feldspar compositions are in excellent agreement with the Bachinski and Muller (1971) microcline-low-albite solvus.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachinski, S.W., and Muller, G. (1971) J. Petrol. 12, 329-56.CrossRefGoogle Scholar
Flehmig, W. (1977) Contrib. Mineral. Petrol. 65, 1-9.CrossRefGoogle Scholar
Goldsmith, J.R., and Jenkins, D.M. (1984) Geol. Soc. Am. Abstracts with Programs, 16, No. 6, 521.Google Scholar
Helgeson, H.L. (1968) Am. J.Sri. 266, 129-66.Google Scholar
Kastner, M. (1971) Am. Mineral. 56, 1403-42.Google Scholar
Kroll, H., and Ribbe, P.H. (1980. Ibid. 65, 449-57.Google Scholar
Kroll, H., and Ribbe, P.H. (1983) In Reviews in Mineralogy,2, 2nd edn. Feldspar Mineralogy(P. H. Ribbe, ed.) Mineral. Soc. Am., 57-100.CrossRefGoogle Scholar
Lyons, D.J., and van de Kamp, P.C. (1980) Lawrence Berkeley Lab. Publ. 10540, 95 pp.Google Scholar
McDowell, S.D., and Elders, W.A. (1980) Contrib. Mineral. Petrol. 74, 293-310.CrossRefGoogle Scholar
McDowell, S.D., and Elders, W.A. (1983) Am. Mineral. 68, 1146-59.Google Scholar
McDowell, S.D., and Elders, W.A. and Paces, J.B. (1985) Mineral. Mag. 49, 469-79.CrossRefGoogle Scholar
Muffler, L.P.J., and Doe, B. (1968) J. Sed. Petrol. 38, 384-99.Google Scholar
Muffler, L.P.J., and Doe, B. and White, D.E. (1969) Bull. Geol. Soc. Am. 80, 157-82.CrossRefGoogle Scholar
Robinson, P.T., Elders, W.A., and Muffler, L.P.J. (1976. Ibid. 87, 347-60.2.0.CO;2>CrossRefGoogle Scholar
Smith, J.V. (1983) In Reviews in Mineralogy, 2,2nd edn. Feldspar Mineralogy(P. H. Ribbe, ed.) Mineral. Soc. Am., 223-39.CrossRefGoogle Scholar
Smith, J.V. and MacKenzie, W.S. (1958) Am. Mineral. 43, 872-89.Google Scholar
Smith, P., and Parsons, I. (1974) Mineral. Mag. 39, 747-67.CrossRefGoogle Scholar
Stewart, D.B., and Ribbe, P.H. (1983) In Reviews in Mineralogy,2, 2nd edn. Feldspar .Mineralogy(P. H. Ribbe, ed.) Min. Soc. Am., 121-40.CrossRefGoogle Scholar
Su, S.C. Bloss, F.D., Ribbe, P.H., and Stewart, D.B. (1984) Am. Mineral. 69, 440-8.Google Scholar
Thompson, J.B., Jr. (1969) Am. Mineral. 54, 341-75.Google Scholar
van de Kamp, P.C. (1973) Bull. Geol. Soc. Am. 84, 827-48.2.0.CO;2>CrossRefGoogle Scholar
Weitz, G. (1972) Z. Kristallogr. 136, 418-26.CrossRefGoogle Scholar