Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T01:39:44.505Z Has data issue: false hasContentIssue false

Columbite from the Carrock Fell tungsten deposit

Published online by Cambridge University Press:  05 July 2018

B. Beddoe-Stephens
Affiliation:
Applied Mineralogy Unit, Institute of Geological Sciences, 64-78 Gray's Inn Road, London, WC1X 8NG
N. J. Fortey
Affiliation:
Applied Mineralogy Unit, Institute of Geological Sciences, 64-78 Gray's Inn Road, London, WC1X 8NG

Abstract

Minute crystals of columbite occur in tungstate ore in the quartz veins at Carrock Fell Mine. Accompanying wolframite crystals show pronounced niobium enrichment adjacent to growth faces. The columbite grains, however, occur as inclusions in minerals formed during metasomatic replacement of the wolframite. They are chemically variable, containing 7–18 % WO3 by weight, up to 1.9% Sc2O3, and up to 4.7% TiO2. Tin, a common minor element in columbite, was not detected. The columbite grains are spatially associated with carbonate minerals involved in wolframite replacement, and it is suggested that their formation occurred principally when carbonate precipitation caused a reduction in the stability of dissolved niobium complexes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrov, I. V. (1967). Geochem. Intern. 4, 558-66.Google Scholar
Björlykke, H. (1935). Norsk Geol. Tiddskr. 14, 213-311.Google Scholar
Bowles, J. F. W. (1975). Rep. Int. Geol. Sci. No. 75/9. 14 pp.Google Scholar
Ewart, A. (1962). Geol. Mag. 99, 1-8.CrossRefGoogle Scholar
Graham, J., and Thornber, M. R. (1974). Am. Mineral. 59, 1026-39.Google Scholar
Grice, J. D., Cerny, P., and Ferguson, R. B. (1972). Can. Mineral. 11, 609-42.Google Scholar
Haapala, I., Sivola, J., and Lofgren, A. (1967). Bull. Comm. Geol. Finlande, 229, 95-100.Google Scholar
Higgins, N. C. (1980). Can. J. Earth Sci. 17, 823-30.CrossRefGoogle Scholar
Hitchen, C. S. (1934). Q. J. Geol. Soc. Lond. 90, 158-200.Google Scholar
Hodkinson, J. P., and Clark, A. M. (1977). Mineral. Mag. 41, 131-2.CrossRefGoogle Scholar
Ineson, P. R. and Mitchell, J. G. (1974). Geol. Mag. 111, 521-37.CrossRefGoogle Scholar
Khalili, A. (1977). Mineral. Mag. 41, 132-3.CrossRefGoogle Scholar
Mason, P. K., Frost, M. T., and Reed, S. J. B. (1969). Nat. Phys. Lab. IMS report No. 2 (unpublished).Google Scholar
Nickel, E. H., Rowland, J. F., and McAdam, R. C. (1963). Am. Mineral. 48, 961-79.Google Scholar
Schröckc, H. (1961). Beitr. Mineral. Petrog. 8, 92-110.Google Scholar
Shepherd, T. J., Bcckinsalc, R. D., Rundlc, C. C., and Durham, J. (1976). Trans. Instn. Min. Metall. 85, B63-73.Google Scholar
von Knorring, O., Sahama, Th. G., and Lchtincn, M. (1969). Bull. Geol. Soc. Finland, 41, 75-7.CrossRefGoogle Scholar