Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T01:02:42.507Z Has data issue: false hasContentIssue false

Clino-suenoite, a newly approved magnesium-iron-manganese amphibole from Valmalenco, Sondrio, Italy

Published online by Cambridge University Press:  28 February 2018

Roberta Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, via Ferrata 1, I-27100 Pavia, Italy
Massimo Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Marco E. Ciriotti
Affiliation:
Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Cirié, Italy
Olav Revheim
Affiliation:
Veddertoppen 48a, N-4640 Søgne, Norway
Roberto Bracco
Affiliation:
Associazione Micromineralogica Italiana, via Montenotte 18/6, I-17100 Savona, Italy
*

Abstract

Clino-suenoite, ideally □${\rm Mn}_{2}^{2 +} $Mg5Si8O22(OH)2 is a new amphibole of the magnesium-iron-manganese subgroup of the amphibole supergroup. The type specimen was found at the Lower Scerscen Glacier, Valmalenco, Sondrio, Italy, where it occurs in Mn-rich quartzite erratics containing braunite, rhodonite, spessartine, carbonates and various accessory minerals. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: ANa0.04B(${\rm Mn}_{1.58}^{2 +} $Ca0.26Na0.16)Σ2.00C(Mg4.21${\rm Mn}_{0. 61}^{2 +} {\rm Fe}_{0.04}^{2 +} $Zn0.01Ni0.01${\rm Fe}_{0.08}^{3 +} $Al0.04)Σ5.00TSi8.00O22W[(OH1.94F0.06)]Σ=2.00. Clino-suenoite is biaxial (+), with α = 1.632(2), β = 1.644(2), γ = 1.664(2) and 2Vmeas. = 78(2)° and 2Vcalc. = 76.3°. The unit-cell parameters in the C2/m space group are a = 9.6128(11), b = 18.073(2), c = 5.3073(6) Å, β = 102.825(2)° and V = 899.1(2) Å3 with Z = 2. The strongest ten reflections in the powder X-ray diffraction pattern [d (in Å), I, (hkl)] are: 2.728, 100, (151); 2.513, 77, ($\bar 2$02); 3.079, 62, (310); 8.321, 60, (110); 3.421, 54, (131); 2.603, 42, (061); 2.175, 42, (261); 3.253, 41, (240); 2.969, 40, (221); 9.036, 40, (020).

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Andrew Christy

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (editors) (2018) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, Virginia, USA. [data for ‘dannemorite’ at http://www.handbookofmineralogy.org/ accessed 15 March 2018]Google Scholar
Bedognè, F., Montrasio, A. and Sciesa, E. (1993) I Minerali della Provincia di Sondrio – Valmalenco. Tipografia Bettini, Ed., Sondrio, 275 pp. [in Italian].Google Scholar
Bedognè, F., Montrasio, A. and Sciesa, E. (2006) I minerali della media-alta Valtellina, delle Orobie valtellinesi e della Val Poschiavo. Aggiornamenti sulle altre località della provincia di Sondrio. Tipografia Bettini, Ed., Sondrio, 255 pp. [in Italian].Google Scholar
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J.B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.CrossRefGoogle Scholar
Bruker, (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cannillo, E., Germani, G. and Mazzi, F. (1983) New crystallographic software for Philips PW1100 single crystal diffractometer. Internal report 2 CNR Centro di Studio per la Cristallografia, Pavia, Italy.Google Scholar
Dana, E.S. (1892) The System of Mineralogy, Sixth Edition with Appendices I, II, and III, Completing the Work to 1915. John Wiley & Sons, New York, pp. 386, 391, 395.Google Scholar
Dunn, J.A. and Roy, O.C. (1938) Tirodite, a new Mn mineral. Records of the Geological Survey of India – Miscellaneous Notes, 73, 295.Google Scholar
Erdmann, A. (1851) Dannemora jernmalmsfelt. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, 819.Google Scholar
Evans, B.W. and Ghiorso, M.S. (1995) Thermodynamics and petrology of cummingtonite. American Mineralogist, 80, 649663.Google Scholar
Hawthorne, F.C. and Grundy, H.D. (1977) The crystal structure and site-chemistry of a zincian tirodite by least-squares refinement of X-Ray and Mossbauer data. Canadian Mineralogist, 15, 309320.Google Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal-chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.Google Scholar
Kenngott, A. (1855) Mineralogischen Forschungen. T.O. Weigel, Leipzig, Germany, pp. 174 [in German].Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G.M. and Stalkeand, D. (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 310.CrossRefGoogle ScholarPubMed
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Guo, Y. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, 35, 219246.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part lV. The compatibility concept and its application. Canadian Mineralogist, 19, 441450.Google Scholar
Matsuura, S. (1984) Crystal chemical study of space group Pnmn type Fe, Mn amphiboles. PhD Dissertation, University of Tsukuba, Tsukuba, Japan.Google Scholar
Oberti, R. and Ghose, S. (1993) Crystal-chemistry of a complex Mn-bearing alkali amphibole on the verge of exsolution. European Journal of Mineralogy, 5, 11531160.Google Scholar
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles: I. Four- and six-coordinated Ti in richterites. European Journal of Mineralogy, 4, 425439.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.Google Scholar
Segeler, C.G. (1961) First U.S. occurrence of manganoan cummingtonite, tirodite. American Mineralogist, 46, 637641.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32 751767.Google Scholar
Stalder, H.A., Wagner, A., Graeser, S. and Stuker, P. (1998) Mineralienlexikon der Schweiz. Verlag Wepf & Co. AG, Basel, Germany, 405 pp. [in German].Google Scholar
Sueno, S., Matsuura, S., Gibbs, G.V. and Boisen, M.B. (1998) A crystal chemical study of protoanthophyllite: orthoamphiboles with the protoamphibole structure. Physics and Chemistry of Minerals, 25, 366377.Google Scholar
Sueno, S., Matsuura, S., Bunno, M. and Kurosawa, M. (2002) Occurrence and crystal chemical features of protoferro-anthophyllite and protomangano-ferroanthophyllite from Cheyenne Canyon and Cheyenne Mountain, U.S.A., and Hirukawa-mura, Suisho-yama, and Yokone-yama, Japan. Journal of Mineralogical and Petrological Sciences, 97, 127136.Google Scholar
Vassileva, R.D. and Bonev, I.K. (2001) Manganoan amphiboles from the skarn-ore Pb-Zn deposits in the Madan District, Central Rhodopes, Bulgaria. Bulgariam Academy of Science, Geochemistry, Mineralogy and Petrology, 38, 4553.Google Scholar
Welch, M.D., Cámara, F., Della Ventura, G. and Iezzi, G. (2007) Non-ambient studies of amphiboles. Pp. 223260 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Williams, P.A., Hatert, F., Pasero, M. and Mills, S.J. (2013) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 16 – New minerals and nomenclature modifications approved in 2013. Mineralogical Magazine, 77, 26952709.Google Scholar
Zanazzi, P.F., Nestola, F. and Pasqual, D. (2010) Compressibility of protoamphibole: a high-pressure single-crystal diffraction study of protomanganoferro-anthophyllite. American Mineralogist, 95, 17581764.Google Scholar
Supplementary material: PDF

Oberti et al. supplementary material

Supplementary Material

Download Oberti et al. supplementary material(PDF)
PDF 119.6 KB