Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T02:09:27.142Z Has data issue: false hasContentIssue false

Clinopyroxenes from the Upper Layered Series Kap Edvard Holm, East Greenland

Published online by Cambridge University Press:  05 July 2018

R. Elsdon*
Affiliation:
Department of Geology, The University, Manchester M13 9PL

Summary

Chemical compositions, unit-cell contents, and optical properties of six clinopyroxenes from the Upper Layered Series are presented. There is a gradual enrichment in iron upwards in the intrusion although there is no measurable effect on the optical properties, possibly because of Cr variation and exsolution of Fe and Ti as oxides. The chemistry of the clinopyroxenes is consistent with crystallization from a water-rich magma of transitional nature between tholeiite and alkali-olivine basalt. X-ray oscillation photographs of single crystals reveal the presence of sub-microscopic exsolution lamellae of pigeonite, a feature consistent with the transitional nature of the parent magma. Exsolution lamellae of titanomagnetite are ubiquitous and were formed at subsolidus temperatures in response to high buffered oxygen fugacity. Comparisons are made between the properties of clinopyroxenes from the Lower, Middle, and Upper Layered Series, and the conditions of crystallization of each series.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, (D.), 1962. Unpublished Ph.D. thesis, University of Manchester.Google Scholar
Anderson, (A. T., JR.), 1968. Journ. Geo. 76, 528.47.CrossRefGoogle Scholar
Bown, (M.G.) and Gay, (P.), 1959. Amer. Min. 44, 592.602 [M.A. 14-418].Google Scholar
Boyd, (F. R., JR.) and Schairer, (J.F.), 1962. Carnegie Inst. Wash. Yearbook. 61, 68.75.Google Scholar
Brown, (G.M.), 1957. Min. Mag. 31, 511.43 [M.A. 13-554].Google Scholar
Deer, (W.A.) and Abbott, (D.), 1965. Ibid. 34, 177.93 [M.A. 17-194].Google Scholar
Elsdon, (R.), 1969. Geol. Mag. 106, 45.56 [M.A. 20-334].CrossRefGoogle Scholar
Hartman, (P.), 1969. Min. Mag. 37, 366.9. [M.A. 20-310].CrossRefGoogle Scholar
Hess, (H.H.), 1949. Amer. Min. 34, 621.66 [M.A. 11-15].Google Scholar
Kusmro, (I.) and Schairer, (J.F.), 1963. Carnegie Inst. Wash. Yearbook. 62, 95.103.Google Scholar
Lebas, (M.J.), 1962. Amer. Journ. Sci. 260, 267.88 [M.A. 15-548].CrossRefGoogle Scholar
Morey, (G.W.), 1957. Econ. Geol. 52, 225.51 [M.A. 14-158].CrossRefGoogle Scholar
Mueller, (R.F.), 1965. Geochimica Acta. 29, 967.76. [M.A. 17-472].CrossRefGoogle Scholar
Muir, (I.D.), 1951. Min. Mag. 29, 690.714.Google Scholar
Muir, (I.D.), 1954. Ibid. 30, 376.88.Google Scholar
Muir, (I.D.), and Tilley, (C.E.), 1964. Journ. Petrology. 5, 409.34 [M.A. 17-320].CrossRefGoogle Scholar
Ojha, (D.N.), 1966. Journ. Indian Geochem. Soc. 1, 86.I12 [M.A. 18-290].Google Scholar
Schairer, (J.F.) and Yoder, (H.S.), 1962. Carnegie Int. Wash. Yearbook. 61, 75.82.Google Scholar
Speidel, (D.H.) and Nafziger, (R.H.), 1968. Amer. Journ. Sci. 266, 361.79.CrossRefGoogle Scholar
Speidel, (D.H.) and Nafziger, (R.H.), and Osborn, (E.F.), 1967. Amer. Min. 52, 1139-52 [M.A. 19-109].Google Scholar
Tillev, (C.E.), Yoder, (H.A.), and Schairer, (J.F.), 1965. Carnegie Inst. Wash. Yearbook. 64, 69.82.Google Scholar
Wager, (L.R.), Brown, (G.M.), and Wadsworth, (W.J.), 1960. Journ. Petrology. 1, 73.85 [M.A. 14-436].CrossRefGoogle Scholar
Wilkinson, (G.F.J.), 1956. Amer. Min. 41, 724.43 [M.A. 13-532].Google Scholar
Winchell, (H.), 1961. Amer. Journ. Sci. 259, 295.319.CrossRefGoogle Scholar