Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T11:46:04.414Z Has data issue: false hasContentIssue false

‘Clinobarylite’–barylite: order-disorder relationships and nomenclature

Published online by Cambridge University Press:  02 January 2018

Stefano Merlino
Affiliation:
Dipartimento di Scienze della Terra, Universita` di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Cristian Biagioni*
Affiliation:
Dipartimento di Scienze della Terra, Universita` di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Elena Bonaccorsi
Affiliation:
Dipartimento di Scienze della Terra, Universita` di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobyovy Gory, Moscow, 119991, Russia
Sergey V. Krivovichev
Affiliation:
Department of Crystallography, Geological Faculty, Saint-Petersburg State University, University Emb. 7/9, St. Petersburg, 199034, Russia
Viktor N. Yakovenchuk
Affiliation:
Nanomaterials Research Centre, Kola Science Centre of the Russian Academy of Sciences, 14 Fersman Street, . Apatity 184200, Murmansk Region, Russia
Thomas Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
*

Abstract

'Clinobarylite', BaBe2Si2O7, was defined as a monoclinic dimorph of orthorhombic barylite. Subsequently, its crystal structure was also proved to be orthorhombic, differing from barylite in terms of the space group symmetry, Pmn21 instead of Pmnb, and in unit-cell dimensions. Through the order-disorder (OD) theory, the polytypic relationships between 'clinobarylite' and barylite are described. 'Clinobarylite' corresponds to the MDO1 polytype, with unit-cell parameters a = 11.650, b = 4.922, c = 4.674 Å, space group Pmn21; barylite corresponds to the MDO2 polytype, with a = 11.67, b = 9.82, c = 4.69 Å, space group Pmnb. The re-examination of the holotype specimen of 'clinobarylite' confirmed its orthorhombic symmetry. Its crystal structure has been refined starting from the atomic coordinates calculated for the MDO1 polytype and the refinement converged to R1 = 0.0144 for 929 observed reflections [Fo > 4σFo]. Owing to their polytypic relationships, 'clinobarylite' and barylite should be conveniently indicated as barylite-1O and barylite-2O, respectively; the name 'clinobarylite' should be discontinued. This new nomenclature of the barylite polytypes has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 13-E).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrashev, K.K., Ilyukhin, V.V. and Belov, N.V. (1965) Crystal structure of barylite, BaBe2Si2O7. Soviet Physics – Crystallography 9, 691-699.Google Scholar
Aminoff, G. (1923) Om en association med barili och hedyphan vid Långban. Geologiska Föreningens i Stockholm Förhandlingar 45, 124-143.CrossRefGoogle Scholar
Blomstrand, C.W. (1876) Bidrag till ka¨nnedomen af Lå ngbans-grufvans mineralier. Geologiska Föreningens i Stockholm Förhandlingar 3, 123-133.CrossRefGoogle Scholar
Bruker AXS Inc. (2004) APEX 2. Bruker Advanced X-ray Solutions. Madison, Wisconsin, USA.Google Scholar
Cannillo, E., Dal Negro, A. and Rossi, G. (1970) On the crystal structure of barylite. Rendiconti della Società Italiana di Mineralogia e Petrologia 26, 53-62.Google Scholar
Chukanov, N.V., Pekov, I.G., Rastsvetaeva, R.K., Shilov, G.V. and Zadov, A.E. (2003) Clinobarylite, BaBe2Si2O7, a new mineral from Khibiny massif, Kola Peninsula. Zapiski Vserrosijskogo Mineralogicheskogo Obshchestva 132, 29-37. [in Russian].Google Scholar
Corker, D.L. and Glazer, A.M. (1996) The crystal structure and optical non linearity of PbO·2B2O3 . Acta Crystallographica, B52, 260-265.CrossRefGoogle Scholar
Di Domizio, A.J., Downs, R.T. and Yang, H. (2012) Redetermination of clinobarylite, BaBe2Si2O7. Acta Crystallographica, E68, 178-179.Google Scholar
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie der OD Strukturen aus Schichten. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie, Geologie und Biologie, 3. Akademie Verlag, Berlin, pp. 106.Google Scholar
Dornberger-Schiff, K. (1966) Lehrgang über OD Strukturen. Akademie Verlag, Berlin, pp. 64.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. Oxford University Press, Oxford, UK.Google Scholar
Grell, H. and Dornberger-Schiff, K. (1982) Symbols of OD groupoid families referring to OD structures (polytypes) consisting of more than one kind of layer. Acta Crystallographica, A38, 49-54.CrossRefGoogle Scholar
Hemme, H., Weil, M. and Huppertz, H. (2005) Highpressure synthesis and crystal structure of the new orthorhombic polymorph b-HgB4O7. Zeitschrift für Naturforschung, 60b, 815-820.Google Scholar
Huppertz, H. (2003) b-CaB4O7: a new polymorph synthesized under high pressure/high temperature conditions. Zeitschrift für Naturforschung, 58b, 257-265.CrossRefGoogle Scholar
Knyrim, J.S., Römer, S.R., Schnick, W. and Huppertz, H. (2009) High-pressure synthesis and characterization of the alkaline earth borate b-BaB4O7. Solid State Sciences 11, 336-342.CrossRefGoogle Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Armbruster, T., Mikhailova, Y. and Pakhomovsky, A. (2004) Clinobarylite, BaBe2Si2O7: structure refinement, and revision of symmetry and physical properties. Neues Jahrbuch für Mineralogie, Monatshefte 2004, 373-384.CrossRefGoogle Scholar
Krogh-Moe, J. (1964) The crystal structure of strontium diborate SrO.2B2O3 . Acta Chemica Scandinavica 18, 2055-2060.CrossRefGoogle Scholar
Machida, K.I., Adachi, G.Y. and Shiokawa, J. (1980) Structure of europium (II) tetraborate. Acta Crystallographica, B36, 2008-2011.CrossRefGoogle Scholar
Nickel, E.H. and Mandarino, J.A. (1987) Procedures involving the IMA Commission on New Minerals and Mineral Names, and guidelines on mineral nomenclature. The Canadian Mineralogist 25, 353-377.Google Scholar
Pan, F., Shen, G., Wang, R., Wang, X. and Shen, D. (2002) Growth, characterization and nonlinear optical properties of SrB4O7 crystals. Journal of Crystal Growth 241, 108-114.CrossRefGoogle Scholar
Perloff, A. and Block, S. (1966) The crystal structure of the strontium and lead tetraborates SrO·2B2O3 and PbO·2B2O3 . Acta Crystallographica 20, 274-279.CrossRefGoogle Scholar
Petersen, O.V. and Johnsen, O. (1980) First occurrence of the rare mineral barylite in Greenland. Tschermak’s Mineralogische und Petrographische Mitteilungen 27, 35-39.CrossRefGoogle Scholar
Rastsvetaeva, R.K. and Chukanov, N.V. (2003) Crystal structure and microtwinning of the new mineral clinobarylite, BaBe2Si2O7. Doklady Chemistry 388, 23-25.CrossRefGoogle Scholar
Robinson, P.D. and Fang, J.H. (1977) Barylite, BaBe2Si2O7: its space group and crystal structure. American Mineralogist 62, 167-169.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.CrossRefGoogle Scholar
Williams, P.A., Hatert, F., Pasero, M. and Mills, S.J. (2014) New minerals and nomenclature modifications approved in 2014. Mineralogical Magazine 78, 558.CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for Crystallography. Volume C. Kluwer, Dordrecht, Netherlands.Google Scholar