Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:54:02.171Z Has data issue: false hasContentIssue false

Chiral edge-shared octahedral chains in liskeardite, [(Al,Fe)32(AsO4)18(OH)42(H2O)22]·52H2O, an open framework mineral with a pharmacoalumite-related structure

Published online by Cambridge University Press:  05 July 2018

I. E. Grey*
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
W. G. Mumme
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
C. M. Macrae
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
T. Caradoc-Davies
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
J. R. Price
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
M. S. Rumsey
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
S. J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
*

Abstract

The type specimen of liskeardite, (Al, Fe)3AsO4(OH)6·5H2O, from the Marke Valley Mine, Liskeard District, Cornwall, has been reinvestigated. The revised composition from electron microprobe analyses and structure refinement is [Al29.2Fe2.8(AsO4)18(OH)42(H2O)22]·52H2O. The crystal structure was determined using synchrotron data collected on a 2 μm diameter fibre at 100 K. Liskeardite has monoclinic symmetry, space group I2, with the unit-cell parameters a = 24.576(5), b = 7.754(2) Å, c = 24.641(5) Å, and β = 90.19(1)º. The structure was refined to R = 0.059 for 9769 reflections with I > 3σ(I). It is of an open framework type in which intersecting polyhedral slabs parallel to (101) and (10) form 17.4 Å × 17.4 Å channels along [010], with water molecules occupying the channels. Small amounts (<1 wt.%) of Na, K and Cu are probably adsorbed at the channel walls The framework comprises columns of pharmacoalumite-type, intergrown with chiral chains of six cis edge-shared octahedra. It can be described in terms of cubic close packing, with vacancies at both the anion and cation sites. The compositional and structural relationships between liskeardite and pharmacoalumite are discussed and a possible mechanism for liskeardite formation is presented.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, V.T. and Fahey, J.J. (1948) Mansfieldite, a new arsenate, the aluminum analogue of scoroditem and the mansfieldite-scorodite series. American Mineralogist, 33, 122132.Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. and Guagliardi, A. (1993) Completion and refinement of crystal structures with SIR92. Journal of Applied Crystallography, 26, 343350.CrossRefGoogle Scholar
Baur, W.H. and Fischer, R.X. (2013) Gaps in cubic closest packing: from MgO via spinel to the pharmacosiderite crystal structure type. Mineralogy and Petrology, 107, 153162.CrossRefGoogle Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B. and Shi, X. (2010) The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. Journal of Synchrotron Radiation, 17, 653658.CrossRefGoogle ScholarPubMed
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Ferreira, D.R., Schulthess, C.P., Amonette, J.E. and Walter, E.D. (2012) An electron paramagnetic resonance spectroscopy investigation of the retention mechanisms of Mn and Cu in the nanopore channels of three zeolite minerals. Clays and Clay Minerals, 60, 588598.CrossRefGoogle Scholar
Flight, W.F. (1883) Two new aluminous mineral species, evigtokite and liskeardite. Journal of the Chemical Society Transactions, 43, 140142.CrossRefGoogle Scholar
Graetsch, H.A. and Schreyer, W. (2005) Rietveld refinement of synthetic monoclinic NaBSiO4 . The Canadian Mineralogist, 43, 759767.CrossRefGoogle Scholar
Guillemin, G. (1952) Etude minéralogique et métallogenique du gîte plumbo-cuprifere du Cap Garonne (Var). Bulletin de la Societé Francaise de Minéralogie et Cristallographie, 75, 70175.CrossRefGoogle Scholar
Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125132.Google Scholar
Lacroix, M.A. (1901) Sur un arsèniate d’alumine de la mine de la Garonne. Bulletin de la Societé Francaise de Minéralogie, XXIV, 2730.CrossRefGoogle Scholar
Le Bail, A. (2005) Whole powder pattern decomposition methods and applications – A retrospection. Powder Diffraction, 20, 316326.CrossRefGoogle Scholar
Maskelyne, N.S. (1878) A new mineral. Nature, 18, 426.CrossRefGoogle Scholar
Mills, S.J., Rumsey, M.S., Favreau, G., Raudsepp, M. and Dini, M. (2011) Bariopharmacoalumite, a new mineral species from Cap Garonne, France and Mina Grande, Chile. Mineralogical Magazine, 75, 135144.CrossRefGoogle Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Petříček, V. and Dušek, M. (2000): JANA2000, a Crystallographic Computing System. Institute of Physics, Academy of Sciences of the Czech Republic, Prague.Google Scholar
Rowles, M.R. (2010) CONVAS2: A program for the merging of diffraction data, Powder Diffraction, 25, 297301.Google Scholar
Rumsey, M.S., Mills, S.J. and Spratt, J. (2010) Natropharmacoalumite, NaAl4[(OH)4(AsO4)3] ·4H2O, a new mineral of the pharmacosiderite supergroup and the renaming of aluminopharmacosiderite to pharmacoalumite. Mineralogical Magazine, 74, 929936.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Visser, J.W. (1969) A fully automated program for finding the unit cell from powder data. Journal of Applied Crystallography, 2, 89.CrossRefGoogle Scholar
Walenta, Von K. (1983) Bulachit, ein neues aluminiumarsenatmineral von Neubulach im nördlichen Schwarzwald. Aufschluss, 34, 445451.Google Scholar
Wallwork, K.S., Kennedy, B.J. and Wang, D. (2007) The high resolution powder diffraction beamline for the Australian Synchrotron, AIP Conference Proceedings, 879, 879882.Google Scholar
Zemann, J. (1948) Formel und Struktur des pharmakosiderites. Tschermaks Mineralogische und Petrographische Mitteilungen, Third Series, 1, 113.CrossRefGoogle Scholar
Supplementary material: File

Grey et al. supplementary material

CIF

Download Grey et al. supplementary material(File)
File 623.3 KB