Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T15:19:18.846Z Has data issue: false hasContentIssue false

Chevkinite-group minerals from Russia and Mongolia: new compositional data from metasomatites and ore deposits

Published online by Cambridge University Press:  05 July 2018

R. Macdonald*
Affiliation:
IGMiP Faculty of Geology, University of Warsaw, 02-089 Warsaw, Poland Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
B. Bagiński
Affiliation:
IGMiP Faculty of Geology, University of Warsaw, 02-089 Warsaw, Poland
P. Kartashov
Affiliation:
Institute of Ore Deposits, Russian Academy of Sciences, Moscow 109107, Russia
D. Zozulya
Affiliation:
Geological Institute, Kola Science Centre, Russian Academy of Sciences, Apatity, Russia
P. Dzierżanowski
Affiliation:
IGMiP Faculty of Geology, University of Warsaw, 02-089 Warsaw, Poland
*

Abstract

Electron-microprobe analyses of Russian and Mongolian chevkinite-group minerals from little-known host lithologies, including various metasomatic rocks, quartzolites and an apatite deposit, are presented. The mineral species analysed include chevkinite-(Ce), perrierite-(Ce), polyakovite-(Ce) and Sr- and Zr-rich perrierite-(Ce). Compositional variation in the Sr-rich members of the group is broadly represented by the exchange vector (Fe + Mn + Al + REE) ↔ (Ca + Sr + Ti + Zr). Despite the varied parageneses, the chevkinite-(Ce) compositions are similar to previously published data. Many crystals have strong internal compositional variations, partly produced during primary crystallization and partly during low-temperature hydrothermal alteration.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, G.V. and Ripp, G.S. (1995) About perrierite found in apatite ore. Proceedings of the Russian Mineralogical Society, 124, 8384 [in Russian, with English abstract].Google Scholar
Belkin, H.E., Macdonald, R. and Grew, E.S. (2009) Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India. Mineralogica. Magazine, 73, 149164 Google Scholar
Carlier, G and Lorand, J.-P. (2008) Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the south Peruvian potassic province. Lithos, 104, 5470.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1999) Primary, agpaitic and deuteric stages in the evolution of accessory Sr, REE, Ba and Nb-mineralization in nepheline-syenite pegmatites at Pegmatite Peak, Bearpaw Mountains, Montana. Mineralogy and Petrology, 67, 85110 CrossRefGoogle Scholar
Chukanov, N.V., Blab, G., Pekov, I.V., Belakovsky, D.I., Rastsvetaeva, R.K. and Aksenov, S.M. (2011) Perrierite-(La), IMA 2010-089. CNMNC Newsletter No. 9, August 2011, page 2537; Mineralogical Magazine, 75, 25352540 Google Scholar
Gagnevin, D., Daly, J.S. and Kronz, A. (2010) Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. Contributions to Mineralogy an. Petrology, 159, 579596 Google Scholar
Haggerty, S.E. and Mariano, A.N. (1983) Strontianloparite and strontio-chevkinite: two new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South America. Contributions to Mineralogy an. Petrology, 84, 365381 Google Scholar
Harlov, D.E. and Fö rster, H.-J. (2003) Fluid-induced nucleation of (Y+REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. America. Mineralogist, 88, 12091229 CrossRefGoogle Scholar
Ito, J. and Arem, J.E. (1971) Chevkinite and perrierite: synthesis, crystal growth and polymorphism. America. Mineralogist, 56, 307319 Google Scholar
Jarosewich, E. and Boatner, L. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostandard. Newsletter, 15, 397399 CrossRefGoogle Scholar
Jiang, N. (2006) Hydrothermal alteration of chevkinite- (Ce) in the Shuiquangou syenitic intrusion, northern China. Chemical Geology, 227, 100112 CrossRefGoogle Scholar
Kopylova, M.G., Rickard, R.S., Kleyenstueber, A., Taylor, W.R., Gurney, J.J. and Daniels, L.R.M. (1997) First occurrence of strontian K-Cr-loparite and Cr-chevkinite in diamonds. Russian Geology an. Geophysics, 38, 405420 Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1992) Geochemical alteration of pyrochlore group minerals: microlite subgroup. America. Mineralogist, 77, 179188 Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. America. Mineralogist, 80, 732743 CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1996) Geochemical alteration of pyrochlore group minerals: betafite subgroup. America. Mineralogist, 81, 12371248 CrossRefGoogle Scholar
Macdonald, R. and Belkin, H.E. (2002) Compositional variation in minerals of the chevkinite group. Mineralogica. Magazine, 66, 10751098 Google Scholar
Macdonald, R., Belkin, H.E., Wall, F. and Bagiń ski, B. (2009) Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks. Mineralogica. Magazine, 73, 521540 Google Scholar
Miyajima, H., Matsubara, S., Miyawaki, R., Yokoyama, K. And Hirokawa, K. (2001) Rengeite, Sr4ZrTi4Si4O22, a new mineral, the Sr-Zr analogue of perrierite from the Itoigawa-Ohmi district, Niigata Prefecture, central Japan. Mineralogica. Magazine, 65, 111120 Google Scholar
Miyajima, H., Miyawaki, R. and Ito, K. (2002) Matsubaraite, Sr4Ti5(Si2O7)2O8, a new mineral, the Sr-Ti analogue of perrierite in jadeitite from the Itoigawa-Ohmi district, Niigata Prefecture, Japan. Europea. Journal of Mineralogy, 14, 11191128 CrossRefGoogle Scholar
Nasdala, L., Kronz, A., Wirth, R., Váczi, T., Pérez-Soba, C., Willner, A. and Kennedy, A.K. (2009) The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon. Geochimica et Cosmochimica Acta, 73, 16371650 CrossRefGoogle Scholar
Nasdala, L., Hanchar, J.M., Rhede, D., Kennedy, A.K. and Váczi, T. (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chemical Geology, 269, 290300 CrossRefGoogle Scholar
Popov, V.A., Pautov, L.A., Sokolova, E., Hawthorne, F.C., McCammon, C. and Bazhenova, L.F. (2001) Polyakovite-(Ce), (REE,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2 (Ti,Nb)2Si4O22, a new metamict mineral species from the Ilmen Mountains, southern Urals, Russia: mineral description and crystal chemistry. The Canadia. Mineralogist, 39, 10951104 CrossRefGoogle Scholar
Portnov, A.M. (1964) Strontium perrierite in the North Baikal region. Doklady of the Academy of Sciences USSR: Eart. Sciences, 156, 118120 Google Scholar
Pouchou, J.L. and Pichoir, J.F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. Pp. 31-75 in: Electron Probe Quantitation (H. Newbury, editor). Plenum Press, New York.Google Scholar
Ruschel, K., Nasdala, L., Rhede, D., Wirth, R., Lengauer, C.L. and Libowitzky, E. (2010) Chemical alteration patterns in metamict fergusonite. Europea. Journal of Mineralogy, 22, 425433 CrossRefGoogle Scholar
Shen, G., Yang, G. and Xu, J. (2005) Maoniupingite-Ce: a new rare-earth mineral from the Maoniuping rareearth deposit in Mianning, Sichuan. Sedimentary Geology and Tethya. Geology, 25, 210216 Google Scholar
Shimazaki, H., Yang, Z., Miyawaki, R. and Shigeoka, M. (2008) Scandium-bearing minerals in the Bayan Obo Nb-REE-Fe deposit, Inner Mongolia.Resource Geology, 58, 8086 CrossRefGoogle Scholar
Tomašić, N., Gajović, A., Bermanec, V., Su, D.S., Rajić Linarić, M., Ntaflos, T. and Schlö gl, R. (2006) Recrystallization mechanisms of fergusonite from metamict mineral precursors. Physics and Chemistry of Minerals, 33, 145159 CrossRefGoogle Scholar
Townsend, K.J., Miller, C.F., D’Andrea, J.L., Ayers, J.C., Harrison, T.M. and Coath, C.D. (2000) Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chemical Geology, 172, 95112 CrossRefGoogle Scholar
Vlach, S.R.F. and Gualda, G.A.R. (2007) Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos, 97, 98121 CrossRefGoogle Scholar
Wang, R.U., Fontan, F., Chen, X.M., Hu, H., Liu, C.S., Xu, S.J. and de Parseval, P. (2003) Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: a record of magmatic and hydrothermal stages of evolution. The Canadia. Mineralogist, 41, 727748 CrossRefGoogle Scholar
Xu, J., Yang, G., Li, G., Wu, Z. and Shen, G. (2008) Dingdaohengite-(Ce) from the Bayan Obo REE-Nb- Fe Mine, China: both a true polymorph of perrierite- (Ce) and a titanic analog at the C1 site of chevkinite subgroup. America. Mineralogist, 93, 740744 CrossRefGoogle Scholar
Yang, Z., Ding, K., Giester, G. and Tillmanns, E. (2011) Hezuolinite, IMA 2010-045. CNMNC Newsletter No. 8, April 2011, page 289; Mineralogical Magazine, 75, 289294 Google Scholar
Zozulya, D.R., Bayanova, T.B. and Eby, G.N. (2005) Geology and age of the Late Archean Keivy alkaline province, northeastern Baltic Shield. Journal of Geology, 113, 601608 CrossRefGoogle Scholar
Supplementary material: File

Macdonald et al. supplementary material

Supplementary tables 1a, 1b, 1c

Download Macdonald et al. supplementary material(File)
File 281.1 KB