Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T14:39:22.427Z Has data issue: false hasContentIssue false

The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany1

Published online by Cambridge University Press:  05 July 2018

H.-J. Förster*
Affiliation:
GeoForschungsZentrum Potsdam, Telegrafenberg, D - 14473 Potsdam, Germany

Abstract

Uraninite is widespread as an accessory mineral in the Erzgebirge granites. It occurs throughout the entire comagmatic series of strongly peraluminous S-type Li-mica granites and has been discovered in more evolved transitional I-S type biotite and two-mica granites, but is rare in those of A-type affinity. Textural relationships and chemical ages imply that uraninite is of magmatic origin. Its composition is variable with a proportion of U plus radiogenic Pb between 71 and 99 mol.%. Uraninite has incorporated Th, Y, and the REE in total amounts between 1 and 29 mol.%. Elements such as P, Si, Al, Ca, and Fe are subordinate. Uraninite from two-mica and Li-mica granites is low in ThO2 (0.8–6.5 wt.%), Y2O3 (0–0.8 wt.%) and REE2O3 (0.1–0.6 wt.%). In contrast, biotite granites from the Kirchberg pluton contain uraninite which is enriched in these components (in wt.%) (ThO2 = 5.6–11.0, Y2O3 = 0.6–5.5, Ce2O3 = 0.1–0.6, Dy2O3 = 0.2–1.1). Commonly, the lanthanide and actinide contents in uraninite correlate poorly with those in the host granite. In S-type Li-mica granites as well as fractionated two-mica and biotite granites, uraninite is the dominant contributor to the bulk-rock U content. Here the proportion of U approaches 80–90%.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This paper is Part III of a series on REE-Y-Th-U-rich accessory minerals in peraluminous granites.

References

Basham, I.R., Ball, T.K., Beddoe-Stephens, B. and Michie, U.McL. (1982) Uranium-bearing accessory minerals and granite fertility: II. Studies of granites from the British Isles. In: Compte-rendu méthodes de prospection de l’uranium; Symposium sur les méthodes de prospeetion de l’uranium — examen dur programme AEN - AIEA de R & D. Organ. Econ. Coop. and Develop., Paris, 398-413.Google Scholar
Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; Implications for the chemistry of crustal melts. J. Petrol., 37, 521–52.Google Scholar
Bowles, J.F.W. (1990) Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem. Geol., 83, 753.Google Scholar
Casillas, R., Nagy, G., Pantó, G., Brädle, J., and Fórizs, I. (1995) Occurrence of Th, U, Y, Zr, and REE-bearing accessory minerals in late-Variscan granitic rocks from the Sierra de Guadarrama (Spain). Eur. J. Mineral., 7,9891006.Google Scholar
Charoy, B. (1986) The genesis of the Comubian batholith (south-west England): the example of the Carnmenellis pluton. J. Petrol., 27, 571604.Google Scholar
Chauris, L., Laforêt, C. and Cotten, J. (1985) Uraninite dans le granite stanno-wolframifère de Montbelleux (Massif armoricain). Bull. Minéral., 108, 855–58.Google Scholar
Chernyshev, I.V. and Golubev, V.N. (1996) The Strel’tsovskoe deposit, eastern Transbaikalia: isotope dating of mineralization in Russia’s largest uranium deposit. Geochem. Int., 34, 834–46.Google Scholar
Cocherie, A., Johan, V., Rossi, P. and Štemprok, M. (1991) Trace element variations and lanthanide tetrad effect studied in a Variscan lithium albite granite: Case of the Cinovec granite (Czechoslovakia). In Source, Transport and Deposition of Metals (Pagel, M. and Leroy, J.L., eds.). Balkema, Rotterdam, 745–9.Google Scholar
Cuney, M. and Friedrich, M. (1987) Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: implications for uranium metallogenesis. Bull. Minéral., 110, 235–47.Google Scholar
Cuney, M., Le Fort, P. and Wang, Z.X. (1984) Uranium and thorium geochemistry and mineralogy in the Manaslu leucogranite (Nepal, Himalaya). In Geology of Granites and their Metallogenetic Relations (Kewqin, Xu and Guangchi, Tu, eds.), Proc. of the Int. Symp., Nanjing, China, Oct. 26-30, 1982, 853–73.Google Scholar
Drake, M.J. and Weill, D.F. (1972) New rare earth elements standards for electron microprobe analysis. Chem. Geol., 10, 179–81.Google Scholar
Fayek, M., Janeczek, J. and Ewing, R.C. (1997) Mineral chemistry and oxygen isotopic analyses of uraninite, pitchblende and uranium alteration minerals from the Cigar Lake deposit, Saskatchewan, Canada. Applied Geochem., 12, 549–65.Google Scholar
Feely, M., McCabe, E. and Williams, C.T. (1989) U-, Th- and REE-bearing accessory minerals in a high heat production leucogranite within the Galway Granite, western Ireland. Trans. Inst. Mining Memll., 98, B2732.Google Scholar
Foord, E., Korzeb, S.L., Lichte, F.E. and Fitzpatrick, J.J. (1997) Additional studies on mixed uranyl oxide-hydroxide hydrate alteration products of uraninite from the Palermo and Ruggles granitic pegmatites, Grafton County, New Hampshire. Canad. Mineral., 35, 145–51.Google Scholar
Förster, B. and Haack, U. (1995) U/Pb-Datierungen von Pechblenden und die hydrothermale Entwicklung der U-Lagerstätte Aue-Niederschlema (Erzgebirge). Z.geol. Wiss., 23, 581–88.Google Scholar
Förster, H.-J. (1998 a) The chemical composition of REE-Y-Th-U-rich accessory minerals from the Erzgebirge-Fichtelgebirge region, Germany. Part I: The monazite-(Ce) - brabantite solid solution series. Amer. Mineral., 83, 259–72.Google Scholar
Förster, H.-J. (1998 b) The chemical composition of REE-Y-Th-U-rich accessory minerals from peralu-minous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime. Amer. Mineral., 86, 1302–15.Google Scholar
Förster, H.-J. and Tischendorf, G. (1994) The western Erzgebirge-Vogtland granites: Implications to the Hercynian magmatism in the Erzgebirge-Fichtelgebirge anticlinorium. In Metallogeny of Collisional Orogens ( Seltmann, R.,Kämpf, H. and Möller, P., eds.), Czech Geol. Surv., Prague. 3548.Google Scholar
Förster, H.-J., Seltmann, R. and Tischendorf, G. (1995) >High-fluorine, low-phosphorus A-type (post-collision) silicic magmatism in the Erzgebirge. Terra Nostra,No. 7, 3235.High-fluorine,+low-phosphorus+A-type+(post-collision)+silicic+magmatism+in+the+Erzgebirge.+Terra+Nostra,No.+7,+32–35.>Google Scholar
Förster, H.-J., Tischendorf, G., Seltmann, R. and Gottesmann, B. (1998) Die variszischen Granite des Erzgebirges: neues Aspekte aus stofflicher Sicht. Z.geol. Wiss., 26, 3160.Google Scholar
Friedrich, M.H. and Cuney, M. (1989) Uranium enrichment processes in peraluminous magmatism. In Uranium Deposits in Magmatic and Metamorphic Rocks,IAEA-TC-571/2, International Atomic Energy Agency, Vienna, 1135.Google Scholar
Fryer, B.J. and Taylor, R.P. (1987) Rare-earth element distributions in uraninites: implications for ore genesis. Chem. Geol., 63, 101–8.Google Scholar
Hidaka, H., Holliger, P., Shimizu, H. and Masuda, A. (1992) Lanthanide tetrad effect observed in the Oklo and ordinary uraninites and its implication for their formation processes. Geochem. J., 26, 337–46.Google Scholar
Jackson, S.E., Longerich, H.P., Dunning, G.R. and Fryer, B.J. (1992) The application of laser-ablation microprobe - inductively coupled plasma - mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Canad. Mineral., 30, 1049–64.Google Scholar
Jarosewich, E. and Boatner, L.A. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter, 15, 397–9.Google Scholar
Jefferies, N.L. (1985) Uraninite within the Carnmenellis pluton, Cornwall. In High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis (Halls, Ch., ed.), 163168. The Institution of Mining and Metallurgy, London.Google Scholar
Kotzer, T.G. and Kyser, T.K. (1993) O, U, and Pb isotopic and chemical variations in uraninite: Implications for determining the temporal and fluid history of ancient terrains. Amer. Mineral., 78, 1262–74.Google Scholar
Kucha, H., Lis, J. and Sylwestrzak, H. (1986) The application of the electron microprobe to dating of U-Th-Pb uraninite from the Karkonosze granites (Lower Silesia). Mineral. Polonica, 17, 43–7.Google Scholar
Lange, G, Mühlstedt, P, Freyhoff, G, and Schröder, D (1991) Der Uranerzbergbau in Thüringen und Sachsen - ein geologisch-bergmännischer Überblick. Erzmetall, 44, 162–71.Google Scholar
Leupolt, L. (1992) Radiometrischer Vergleich der Uran-und Thoriumgehalte in magmatischen Gesteinen sowie den darin akzessorisch auftretenden Mineralen des Harzes und der Buur-Region (Somalia).Thesis, Technische Universität Berlin.Google Scholar
Pagel, M. (1982 a) The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites of the Vosges, France. Mineral. Mag., 46, 149–61.Google Scholar
Pagel, M. (1982 b) Succession paragénétiques et teneurs en uranium des minéraux accessoires dans les roches granitiques: guides pour la recherche des granites favorables à la présence de gisements d’uranium. In: Compte-rendu méthodes de prospection de l’uranium;Symposium sur les méthodes de prospection de l’uranium — examen dur programme AEN - AIEA de R & D. Organ. Econ. Coop. and Develop., Paris, 445-56.Google Scholar
Parslow, G.R., Brandstäitter, F., Kurat, K. and Thomas, D.J. (1985) Chemical ages and mobility of U and Th in anatectites of the Creek Lake Zone, Saskatchewan. Canad. Mineral., 23, 543–51.Google Scholar
Poty, B., Leroy, J., Cathelineau, M., Cuney, M.,Friedrich, M., Lespinasse, M. and Turpin, L. (1986) Uranium deposits spatially related to granites in the French part of the Hereynian orogeny. In Vein Type Uranium Deposits, IAEA-TC-361, International Atomic Energy Agency, Vienna, 215–46.Google Scholar
Rhede, D., Wendt, I. and Förster, H.-J. (1996) A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chem. Geol., 130, 247–53.Google Scholar
Rimsaite, J. (1989) Genetic significance of inclusions and fracture fillings in magmatic and metamorphic rocks from selected Canadian uranium occurrences. In Uranium Deposits in Magmatic and Metamorphic Rocks, IAEA-T0C-571/11. International Atomic Energy Agency, Vienna, 167–88.Google Scholar
Rong, J., Han, Z. and Xia, Y. (1989) Uranium metallogenesis of coarse grained granite in Area H, China. In Uranium Deposits in Magmatic and Metamorphic Rocks,IAEA-TC-571/7, Intemational Atomic Energy Agency, Vienna, 93113.Google Scholar
Snetsinger, K.G. and Polkowski, G. (1977) Rare accessory uraninite in a Sierran granite. Amer. Mineral., 62, 587–8.Google Scholar
Thomas, R. (1988) Untersuchungen von Schmelzeinschliissen und ihre Anwendung zur Lösung lagerstättengeologischer und petrologischer Problemstellungen. Habilitation Thesis, Bergakademie Freiberg.Google Scholar
Thorpe, R.S., Tindle, A.G. and Gledhill, A. (1990) The petrology and origin of the Tertiary Lundy granite (Bristol Channel, UK). J. Petrol., 31, 1379–406.Google Scholar
Tischendorf, G. (1989) Silicic Magmatism and Metallogenesis of the Erzgebirge. Veröff Zentralinst. Physik Erde Potsdam, 107, 316 pp.Google Scholar
Tischendorf, G. and Förster, H.-J. (1994) Hercynian granite magmatism and related metallogenesis in the Erzgebirge: A status report. In Mineral Deposits of the Erzgebirge/Krušné hory (Germany/Czech Republic) (Gehlen, Kv. and Klemm, D.D., eds.). Monograph Series on Mineral Deposits, 31, 523.Google Scholar
Wark, D.A. and Miller, C.F. (1993) Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime, and zircon in the Sweetwater Wash pluton, southeastern California, U.S.A. Chem. Geol., 110, 4967.Google Scholar
Yudintsev, S.V. and Simonova, L.I. (1992) Radiochemistry of tin-bearing lithium-fluorine granites. Geochem. Intern., 29, 4855.Google Scholar