Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T23:33:32.576Z Has data issue: false hasContentIssue false

Chemical and mineralogical changes during basalt-seawater interaction: Site 223, Leg 23, D.S.D.P., north-west Indian Ocean

Published online by Cambridge University Press:  05 July 2018

C. Th. Papavassiliou
Affiliation:
Department of Geology, The University, Southampton, SO9 5NH
M. E. Cosgrove
Affiliation:
Department of Geology, The University, Southampton, SO9 5NH

Abstract

The development of low- and hightemperature alteration products in a 23 m section of ocean-floor basalts is described. Analcime, calcite and dioctahedral smectite are ubiquitous. Trioctahedral smectite, smectite-chlorite mixed layers, chabazite and scolecite occur in the deeper sections with Fe3+ oxides/hydroxides progressively becoming more abundant in the upper regions. The upper layers of the sequence show marked chemical reduction. High-temperature chemical changes include Na and Mg enrichment accompanied by Ca and Fe2+ losses. Superimposed low temperature changes include gains in Fe3+ K, Li, and Rb, and losses in Na, Ca, and Fe2+ Many trace elements also show consistent behaviour.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Laboratory of Mineralogy and Petrology, University of Athens, Ano Ilissia (Panepistimioupolis), Athens, Greece.

References

Andrews, A. J., Barnett, L. R., MacClement, B. A. E., Fyfe, N. S., Morrison, G., Macrae, N. D., and Starkey, J. (1977). Initial Reports of D.S.D.P. 37, Washington D.C., U.S. Govt. Printing Office. 795-810.Google Scholar
Bass, M. N., Moberly, R., Rhodes, J. M., Shih, C. S., and Church, S. E. (1973). Ibid. 17, 429-503.Google Scholar
Bass, M. N., Moberly, R., Rhodes, J. M., Shih, C. S., and Church, S. E. (1976). Ibid. 34, 393432.Google Scholar
Hart, R. A. (1973). Can. J. Earth Sci. 10, 799-815.CrossRefGoogle Scholar
Hart, R. A. (1976). Initial Reports of D.S.D.P. 34, 301-39.Google Scholar
Hart, S. R. (1969). Earth Planet. Sci. Lett. 6, 295-303.CrossRefGoogle Scholar
Iijima, A. 1978. In Natural Zeolites, Sand, L. B., and Mumpton, F. A. (eds.) Oxford New York (Pergamon Press). 175-98.Google Scholar
Jehl, V., Poty, B., and Weisbrod, A. (1977). Bull. Geol. Soc. France, 7, 1213-21.CrossRefGoogle Scholar
Keene, J. B., Claque, D. A., and Nishimori, R. K. (1976). J. Sed. Petrol. 46, 647-53.Google Scholar
Kharin, G. N. (1976). Initial Reports D.S.D.P. 38, 685-715.Google Scholar
Melson, G. W. and Thompson, G. (1973). Geol. Soc. Am., Bull. 84, 703-16.2.0.CO;2>CrossRefGoogle Scholar
Miyashiro, A. and Shido, F. (1970). Lithos, 3, 251-60.CrossRefGoogle Scholar
Miyashiro, A. and Ewing, M. (1971). Phil. trans. R. Soc. A 268, 589-603.Google Scholar
Papavassiliou, C. T. (1979). Unpubl. Ph.D. thesis, University of Southampton.Google Scholar
Scheidegger, K. F. and Stakes, D. S. (1977). Earth Planet. Sci. Lett. 36, 413-23.CrossRefGoogle Scholar
Tomasson, J. and Kristmannsdottir, H. (1972). Contrib. Mineral. Petrol. 36, 123-34.CrossRefGoogle Scholar
Weaver, C. E. and Pollard, L. D. (1973). The Chemistry of Clay Minerals. Amsterdam (Elsevier).Google Scholar
Whitmarsh, R. B., Weser, O. E., Ross, D. A. et al. (1974). Initial Report D.S.D.P. 23.Google Scholar