Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T19:58:28.077Z Has data issue: false hasContentIssue false

Cation partitioning in an unusual strontian potassicrichterite from Siberia: Rietveld structure refinement and Mössbauer spectroscopy

Published online by Cambridge University Press:  25 June 2018

E. V. Sokolova*
Affiliation:
Department of Crystallography and Crystal Chemistry, Faculty of Geology, Moscow State University, Vorob’evy Gory, Moscow 119899, Russia
Yu. K. Kabalov
Affiliation:
Department of Crystallography and Crystal Chemistry, Faculty of Geology, Moscow State University, Vorob’evy Gory, Moscow 119899, Russia
C. McCammon
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth D-95440, Germany
J. Schneider
Affiliation:
Institute für Kristallographie und Angewandte Mineralogie, Universität München, Theresienstraβe 41, München D-80333, Germany
A. A. Konev
Affiliation:
Institute of Earth’s Crust, Russian Academy of Sciences, Lermontova St. 128, Irkutsk 664033, Russia
*

Abstract

The crystal structure of strontian potassicrichterite (Mg4.871Fe0.1263+ Mn0.052)Σ5.049(Na1.425Ca0.348Sr0.297)σ2.07K0.873Si8.048O22(OH)2.15 – an unusual amphibole containing up to 3.7 wt.% SrO from the Murun alkaline massif, Eastern Siberia has been refined from X-ray powder diffraction data in monoclinic space group C2/m, with a = 10.0325(1) Å, b = 17.977(1) Å, c = 5.2698(1) Å, and β = 104.70(1)°. According to Mössbauer spectroscopy, nearly all iron occurs as Fe3+ in octahedral coordination. Rietveld refinement shows the Fe3+ to be ordered onto the M(2) site. Sr is completely ordered onto M(4).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bérar, J.F. and Lelann, P. (1991) E.S.D.'s and estimated probable error obtained in Rietveld refinements with local correlations. J. Appl. Crystallogr., 24, 15.CrossRefGoogle Scholar
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory, 2nd ed. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Ernst, W.G. and Wai, C.M. (1970) Mössbauer, infrared, X-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles. Amer. Mineral., 55, 1226–58.Google Scholar
Hawthorne, F.C. (1983) The crystal chemistry of the amphiboles. Canad. Mineral., 21, 173480.Google Scholar
Hill, R. and Flack, H.D. (1987) The use of the Durbin-Watson d statistic in Rietveld analysis. J. Appl. Crystallogr., 20, 356–61.CrossRefGoogle Scholar
Konev, A.A. (1996) Sr-rich amphibole – a new mineral and a gemstone. 30th Int. Geol. Cong., Beijing, China. Abstracts, 2, 442.Google Scholar
Konev, A.A., Paradina, L.F., Vorob'ev, E.I., Malyshonok, Yu.V., Lapides, I.L. and Ushchapovskaya, Z.F. (1988) Magnesium-strontium potassicrichterite – a new variety of amphibole. Mineral. Zhurn., 10, 7682. (in Russian).Google Scholar
Leake, B.E. and 21 others (1997) Nomenclature of the amphiboles: report of the sub-committee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral. Mag., 61, 295321.CrossRefGoogle Scholar
Long, G.L., Cranshaw, T.E. and Longworth, G. (1983) The ideal Mössbauer effect absorber thickness. Moess. Effect Ref. Data. J., 6, 42–9.Google Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles: I. Four- and six-coordinate Ti in richterite. Eur. J. Mineral., 4, 425–39.CrossRefGoogle Scholar
Robert, J.-L., Della Ventura, G., Raudsepp, M. and Hawthorne, F.C. (1993) Rietveld structure refinement of synthetic strontian potassium-richterites. Eur. J. Mineral., 5, 199206.CrossRefGoogle Scholar
Schneider, J. (1989) Profile refinement on IBM-PCs, IUCr. Int. Workshop on the Rietveld method, p.71.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751–67.CrossRefGoogle Scholar
Wölfel, E.R. (1981) A new method for quantitative X-ray analysis of multiphase mixtures. J. Appl. Crystallogr., 14, 291–6.CrossRefGoogle Scholar
Wölfel, E.R. (1983) A novel curved position-sensitive proportional counter for X-ray diffractometry. J. Appl. Crystallogr., 16, 341–8.CrossRefGoogle Scholar