Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T13:23:53.560Z Has data issue: false hasContentIssue false

Carbonatite lapilli-bearing tuff and a dolomite carbonatite bomb from Murumuli crater, Katwe volcanic field, Uganda

Published online by Cambridge University Press:  05 July 2018

F. Stoppa*
Affiliation:
Dipartimento di Scienze della Terra, Università G. d'Annunzio, 66013-Chieti Scalo, Italy
A. R. Woolley
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
F. E. Lloyd
Affiliation:
PRIS, University of Reading, Whiteknights, Reading, RG6 6AB, UK
N. Eby
Affiliation:
Department of Environmental, Earth & Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA
*

Abstract

A group of carbonate-rich tuffs are described from the Murumuli crater, Katwe-Kikorongo volcanic field, SW Uganda which contain abundant carbonatite pelletal lapilli, together with melilitite lapilli and a range of xenocrysts and lithic fragments including clinopyroxenites considered to be of mantle origin. The carbonatite lapilli consist essentially of Sr-bearing calcite and Mg-calcite which form quench-textured laths. The lapilli contain microphenocrysts of Ti-magnetite, perovskite, apatite, clinopyroxene, sanidine and altered prisms of melilite. A 7 cm long dolomite carbonatite bomb is described which displays a form typically assumed by lava clots erupted in a molten state. Chemical analyses of a tuff, the bomb and a range of minerals are presented. Carbonatite clearly played an important role in the Katwe-Kikorongo magmatism and it is suggested that carbonatite magma evolved from carbonate-bearing melilitite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D.K. (1990) Mantle carbonatite eruptions: crustal contect and implications. Lithos, 26, 3742.CrossRefGoogle Scholar
Combe, A.D. (1936) The volcanic area of Bunyaraguru, North West Ankole. Unpubl. report, Uganda Geological Survey. Google Scholar
Eckermann, H. von (1948) The alkaline district of Alnö Island. Sveriges Geologiska Undersokning Avhandlingar och uppsatser, Ser Ca, 36, 1–176.Google Scholar
Holmes, A. (1956) The ejectamenta of Katwe crater, south-west Uganda. Verhandelingen van het Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap, Geologische Serie, 16, 139–66.Google Scholar
Hough, F.E. (1972) The petrogenesis of strongly alkaline mafic lavas and associated nodule suites from the West Eifel and South West Uganda. Ph.D thesis, Univ. Reading, UK.Google Scholar
Lloyd, F.E. (1985) Experimental melting and crystallisation of glassy olivine melilitites. Contrib. Mineral. Petrol., 90, 236–43.CrossRefGoogle Scholar
Lloyd, F.E., Huntingdon, A.T., Davies, G.R. and Nixon, P.H. (1991) Phanerozoic volcanism of Southwest Uganda: a case for regional K and LILE enrichment of the lithosphere beneath a domed and rifted continental plate. Pp. 2372 in: Magmatism in Extensional Structural Settings: the Phanerozoic African Plate (Kampunzu, A.B. and Lubala, R.T., editors). Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Lloyd, F.E., Woolley, A.R., Stoppa, F. and Eby, N.G. (1999) Rift valley magmatism – is there evidence for laterally variable alkali clinopyroxenite mantle? Geolines, 9, 7683.Google Scholar
Mitchell, R.H (1972) Composition of perovskite in kimberlite. Amer. Mineral., 57, 1748–53.Google Scholar
Mitchell, R.H. (1997) Kimberlites, Orangeites, Lamproites, Melilitites and Minettes: a Petrographic Atlas. Almaz Press, Thunder Bay, Canada.Google Scholar
Mitchell, R.H. and Fritz, P. (1973) Kimberlite from Somerset Island, District of Franklin, N.W.T. Canad. J. Earth Sci., 10, 384–93.CrossRefGoogle Scholar
Riley, T.R. (1994) Quaternary volcanism of the Rockeskyll complex, west Eifel Germany and the carbonatite-nephelinite-phonolite association. PhD thesis, Univ. Bristol, UK.Google Scholar
Stoppa, F. (1996) The San Venanzo maar and tuff ring, Umbria, Italy: eruptive behaviour of a carbonatite– melilitite volcano. Bull. Volcanol., 57, 563–77.Google Scholar
Stoppa, F. and Cundari, A. (1995) A new Italian carbonatitic occurence at Cupaello (Rieti) and its genetic significance. Contrib. Mineral. Petrol., 122, 275–88.CrossRefGoogle Scholar
Stoppa, F. and Lavecchia, G. (1992) Late Pleistocene ultra-alkaline magmatic activity in the Umbria-Latium region (Italy); an overview. J. Volcanol. Geotherm. Res., 52, 277–93.CrossRefGoogle Scholar
Stoppa, F. and Lupini, L. (1993) Mineralogy and petrology of the Polino monticellite calcite carbonatite (Central Italy). Mineral. Petrol., 49, 213–31.CrossRefGoogle Scholar
Stoppa, F. and Woolley, A.R. (1997) The Italian carbonatites: field occurrence, petrology and regional significance. Mineral. Petrol., 59, 43–67.CrossRefGoogle Scholar
Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. Pp. 114 in Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar