Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T09:50:43.939Z Has data issue: false hasContentIssue false

Can lithium contents in mica be correctly calculated? Tischendorf́s proposal (Mineralogical Magazine 61/1997) 25 years after

Published online by Cambridge University Press:  18 September 2023

Karel Breiter*
Affiliation:
BIC Brno, Purkyňova 125, CZ-61200 Brno, Czech Republic Institute of Geology, Czech Academy of Sciences, Rozvojová 269, CZ-16500, Praha 6, Czech Republic
Michaela Vašinová Galiová
Affiliation:
BIC Brno, Purkyňova 125, CZ-61200 Brno, Czech Republic Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
Zuzana Korbelová
Affiliation:
Institute of Geology, Czech Academy of Sciences, Rozvojová 269, CZ-16500, Praha 6, Czech Republic
Michaela Hložková
Affiliation:
BIC Brno, Purkyňova 125, CZ-61200 Brno, Czech Republic
*
Corresponding author: Karel Breiter; Email: [email protected]

Abstract

Micas are the most common hosts of lithium in granitoid igneous rocks. Unfortunately, their Li contents cannot be determined by electron-probe microanalysis (EPMA) which is the most common method of mineral analysis. In an effort to avoid the use of other, technically more complex and expensive methods, several empirical schemes for the estimation of Li-contents from EPMA data have been developed. The methods proposed by Tischendorf (Mineralogical Magazine, 1997) have found the widest application. After 25 years of common usage, we have evaluated these methods by direct Li determination using laser ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS). Approximately 3000 spot analyses of Li in micas from eight areas worldwide obtained by LA–ICP–MS were compared with the values yielded by the methods of Tischendorf. We conclude that none of the lithium estimation methods can compensate fully for a real local analysis by LA–ICP–MS or secondary-ion mass spectrometry (SIMS). Generally, SiO2-based estimation for trioctahedral micas provides a better match to the analysed values than F-based estimation for dioctahedral micas. The Rb-based estimation for dioctahedral micas does not provide acceptable results. The usage of averaged Si- and F-based estimations can be accepted in common petrological studies for a general characterisation of mica species. Large errors of individual spot estimations preclude their usage in detailed mineralogical studies.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Edward S. Grew

References

Badanina, E.V., Veksler, I.V., Thomas, R., Syritso, L.F. and Trumbull, R.B. (2004) Magmatic evolution of Li-F rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chemical Geology, 210, 113133.10.1016/j.chemgeo.2004.06.006CrossRefGoogle Scholar
Bailey, S.W. (editor) (1984) Micas. Reviews in Mineralogy, vol. 13. Mineralogical Society of America, Washington DC.10.1515/9781501508820CrossRefGoogle Scholar
Bastos Neto, A.C., Pereira, V.P., Ronchi, L.H., Lima, E.F. and Frantz, J.C. (2009) The world-class Sn, Nb, Ta, F (Y, REE, Li) deposit and the massive cryolite associated with the albite-enriched facies of the Madeira A-type granite, Pitinga mining district, Amazonas State, Brazil. The Canadian Mineralogist, 47, 13291357.10.3749/canmin.47.6.1329CrossRefGoogle Scholar
Bouguebrine, J., Bouabsa, L. and Marignac, C. (2023) Greisen and pseudo-greisen in the Tamanrasset area (Central Hoggar, Algeria): petrography, geochemistry and insight on the fluids origin from mica chemistry. Journal of African Earth Sciences, 202, 104898.10.1016/j.jafrearsci.2023.104898CrossRefGoogle Scholar
Breiter, K., Vaňková, M., Vašinová Galiová, M., Korbelová, Z. and Kanický, V. (2017a) Lithium and trace element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS. Mineralogical Magazine, 81, 1533.10.1180/minmag.2016.080.137CrossRefGoogle Scholar
Breiter, K., Ďurišová, J., Hrstka, T., Korbelová, Z., Hložková Vaňková, M., Vašinová Galiová, M., Kanický, V., Rambousek, P., Knésl, I., Dobeš, P. and Dosbaba, M. (2017b) Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec-Zinnwald Sn–W–Li deposit, Central Europe. Lithos, 292, 198217.10.1016/j.lithos.2017.08.015CrossRefGoogle Scholar
Breiter, K., Hložková, M., Korbelová, Z. and Vašinová Galiová, M. (2019) Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews, 106, 1227.10.1016/j.oregeorev.2019.01.013CrossRefGoogle Scholar
Breiter, K., Ďurišová, J., Korbelová, Z., Lima, A., Vašinová Galiová, M., Hložková, M. and Dosbaba, M. (2022) Rock textures and mineral zoning – A clue to understanding rare-metal granite evolution: Argemela stock, Central-Eastern Portugal. Lithos, 410–411, 106562.10.1016/j.lithos.2021.106562CrossRefGoogle Scholar
Breiter, K., Ďurišová, J., Korbelová, Z., Vašinová Galiová, M. and Hložková, M. (2023a) Granite pluton at the Panasqueira tungsten deposit, Portugal: Genetic implications as revealed from new geochemical data. Minerals, 13, 163.10.3390/min13020163CrossRefGoogle Scholar
Breiter, K., Vašinová Galiová, M., Hložková, M., Korbelová, Z., Kynický, J. and Costi, H.T. (2023b) Trace element composition of micas from rare-metal granites of different geochemical affiliations. Lithos, 446–447, 107135.Google Scholar
Brigatti, M.F., Lugli, C., Poppi, L., Ford, E.F. and Kile, D.E. (2000) Crystal chemical variations in Li- and Fe-rich micas from Pikes Peak batholith (central Colorado). American Mineralogist, 85, 12751286.10.2138/am-2000-8-920CrossRefGoogle Scholar
Černý, P., Staněk, J., Novák, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kavalová, M. and Chapman, R. (1995) Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55, 177201.10.1007/BF01162587CrossRefGoogle Scholar
Černý, P., Chapman, R., Teerstra, K. and Novák, M. (2003) Rubidium- and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88, 18321835.10.2138/am-2003-11-1226CrossRefGoogle Scholar
Charoy, B., Chaussidon, M., Noronha, F. (1995) Lithium zonation in white micas from the Argemela microgranite (central Portugal): an in-situ ion-, electron-microprobe and spectroscopic investigation. European Journal of Mineralogy, 7, 335352.10.1127/ejm/7/2/0335CrossRefGoogle Scholar
Costi, H.T., Dall´Agnol, R., Pichavant, M. and Rämö, O.T. (2009) The peralkaline tin-mineralized Madeira cryolite albite-rich granite of Pitinga, Amazonian craton, Brazil: petrography, mineralogy and crystallization processes. The Canadian Mineralogist, 47, 13011327.10.3749/canmin.47.6.1301CrossRefGoogle Scholar
Du Bray, E.A. (1994) Compositions of micas in peraluminous granitoids of the eastern Arabian Shield. Contribution to Mineralogy and Petrology, 116, 381397.10.1007/BF00310906CrossRefGoogle Scholar
Foord, E.E., Černý, P., Jackson, L.L., Sherman, D.M. and Eby, R.K. (1995) Mineralogical and chemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, Colorado. Mineralogy and Petrology, 55, 126.10.1007/BF01162576CrossRefGoogle Scholar
Foster, M.D. (1960) Interpretation of the composition of Li-micas. U.S. Geological Survey Professional Paper, 354E, 113147.Google Scholar
Grew, E.S., Bosi, F., Ros, L., Kristiansson, P., Gunter, M.E., Halenius, U., Trumbull, R.B. and Yates, M.G. (2018) Fluor-elbaite, lepidolite and Ta–Nb oxides from a pegmatite of the 3000 Ma Sinceni Pluton, Swaziland: evidence for lithium–cesium–tantalum (LCT) pegmatites in the Mesoarchean. European Journal of Mineralogy, 30, 205218.10.1127/ejm/2017/0029-2686CrossRefGoogle Scholar
Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-micas from S.W. England and France. An ion- and electron-microprobe study. Mineralogical Magazine, 53, 427449.10.1180/minmag.1989.053.372.03CrossRefGoogle Scholar
Launay, G., Sizaret, S., Lach, P., Melleton, J., Gloaguen, E. and Poujol, M. (2021) Genetic relationship between greisenization and Sn-W mineralizations in vein and greisen deposits: Insights from the Panasqueira deposit (Portugal). BSGF—Earth Sciences Bulletin, 192, 2.10.1051/bsgf/2020046CrossRefGoogle Scholar
Legros, H., Marignac, C., Mercadier, J., Cuney, M., Richard, A., Wang, R.C., Charles, N. and Lespinasse, M.Y. (2016) Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China). Lithos, 264, 108124.10.1016/j.lithos.2016.08.022CrossRefGoogle Scholar
Legros, H., Marignac, C., Tabary, T., Mercadier, J., Richar, A., Cuney, M., Wang, R.C., Charles, N. and Lespinasse, M.Y. (2018) The ore-forming magmatic-hydrothermal system of the Piaontang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. American Mineralogist, 103, 3954.10.2138/am-2018-6196CrossRefGoogle Scholar
Li, J., Huang, X-L., He, P-L., Li, W-X., Yu, Y. and Chen, L-l. (2015) In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65, 793810.10.1016/j.oregeorev.2014.09.028CrossRefGoogle Scholar
Lukkari, S., Thomas, R. and Haapala, I. (2009) Crystallization of the Kymi topaz granite stock within the Wiborg rapakivi batholith, Finland: Evidence from melt inclusions. The Canadian Mineralogist, 47, 13591374.10.3749/canmin.47.6.1359CrossRefGoogle Scholar
Marignac, C., Cuney, M., Cathelineau, M., Lecomte, A., Carocci, E. and Pinto, F. (2020) The Panasqueira rare metal granite suites and their involvement in the genesis of the world-class Panasqueira W-Sn-Cu deposit: a petrographic, mineralogical, and geochemical study. Minerals, 10, 562.10.3390/min10060562CrossRefGoogle Scholar
Martins, T., Roda-Robles, E., Lima, A. and De Parseval, P. (2012) Geochemistry and evolution of micas in the Barroso-Alvao pegmatite field, Northern Portugal. The Canadian Mineralogist, 50, 11171129.10.3749/canmin.50.4.1117CrossRefGoogle Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114, 363376.10.1007/BF01244563CrossRefGoogle Scholar
Michaud, J.A-S. and Pichavant, M. (2020) Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: evidence from Argemela (Central Portugal). Geochimica et Cosmochimica Acta, 289, 130157.10.1016/j.gca.2020.08.022CrossRefGoogle Scholar
Monier, G. and Robert, J-L. (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O–Li2O–MgO–FeO–Al2O3–SiO2–H2O–HF at 600°C, 2 kbar P H2O: comparison with natural lithium micas. Mineralogical Magazine, 50, 641651.10.1180/minmag.1986.050.358.09CrossRefGoogle Scholar
Monier, G., Charoy, B., Cuney, M., Ohnenstetter, D. and Robert, J.L. (1987) Evolution spatiale et temporelle de la composition des micas du granite albitigue a topaze-l´epidolite de Beauvoir. Geologie de la France, 2–3, 179188.Google Scholar
Monnier, L., Salvi, S., Melleton, J., Lach, P., Pochon, A., Baily, L., Beziat, D. and De Parseval, P. (2022) Mica trace-element signatures: highlighting superimposed W-Sn mineralizations and fluid sources. Chemical Geology, 600, 120866.10.1016/j.chemgeo.2022.120866CrossRefGoogle Scholar
Mottana, A., Sassi, F.P., Thompson, J.B. Jr. and Guggenheim, S. (editors)(2002) Micas: Crystal Chemistry & Metamorphic Petrology. Reviews in Mineralogy and Geochemistry, Volume 46. Mineralogical Society of America and the Geochemical Society, Washington DC.10.1515/9781501509070CrossRefGoogle Scholar
Neiva, A.M.R. (1987) Geochemistry of white micas from Portugues tin and tungsten deposits. Chemical Geology, 63, 299317.10.1016/0009-2541(87)90168-9CrossRefGoogle Scholar
Petrík, I., Čík, Š., Miglierini, M., Vaculovič, T., Dianiška, I. and Ozdín, D. (2014) Alpine oxidation of lithium micas in Permian S-type granites (Gemeric unit, Western Carpathians, Slovakia). Mineralogical Magazine, 78, 507533.10.1180/minmag.2014.078.3.03CrossRefGoogle Scholar
Raimbault, L., Cuney, M., Azencott, C., Duthou, J.L. and Joron, J.L. (1995) Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90, 548596.10.2113/gsecongeo.90.3.548CrossRefGoogle Scholar
Rieder, M. (1970) Chemical compositions and physical properties of lithium-iron micas from the Krušné hory Mts. (Erzgebirge). Contributions to Mineralogy and Petrology, 27, 131158.10.1007/BF00371980CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., Dyakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, P.F., Takeda, H., Weis, Z. and Wones, D.R. (1999) Nomenclature of micas. Mineralogical Magazine, 73, 267279.10.1180/minmag.1999.063.2.13CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Grespo, P.P., Torres-Ruiz, J. and De Parseval, P. (2006) Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain). European Journal of Mineralogy, 18, 369377.10.1127/0935-1221/2006/0018-0369CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil-Grespo, P. and Torres-Ruiz, J. (2012) From granite to highly evolved pegmatite: a case study of the Pinilla de Fermoselle granite-pegmatite system (Zamora, Spain). Lithos, 153, 192207.10.1016/j.lithos.2012.04.027CrossRefGoogle Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995) Micas of the muscovite-lepidolite series from the Fregeneda pegmatites (Salamanca, Spain). Mineralogy and Petrology, 55, 145157.10.1007/BF01162585CrossRefGoogle Scholar
Roda, E., Keller, P., Pesquera, A. and Fontan, F. (2007) Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia. Mineralogical Magazine, 71, 4162.10.1180/minmag.2007.071.1.41CrossRefGoogle Scholar
Stone, M., Exley, C.S. and George, M.C. (1988) Compositions of trioctahedral micas in the Cornubian batholith. Mineralogical Magazine, 52, 175192.10.1180/minmag.1988.052.365.04CrossRefGoogle Scholar
Sulcek, L., Marler, B. and Fechtelkord, M. (2023) Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH/F and Li/Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction. European Journal of Mineralogy, 35, 199217.10.5194/ejm-35-199-2023CrossRefGoogle Scholar
Thiergärtner, H. (2010) Can the Li2O content of mica really be calculated from its main chemical components? Zeitschrift für geologische Wissenschaften, 38, 195205.Google Scholar
Tindle, A.G. and Webb, P.C. (1990) Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. European Journal of Mineralogy, 2, 595610.10.1127/ejm/2/5/0595CrossRefGoogle Scholar
Tischendorf, G., Gottesmann, B., Förster, H-J. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809834.10.1180/minmag.1997.061.409.05CrossRefGoogle Scholar
Tischendorf, G., Gottesmann, B. and Förster, H-J. (1999) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63, 5774.10.1180/002646199548312CrossRefGoogle Scholar
Van Lichtervelde, M., Grégoire, M., Linnen, R.L., Béziat, D. and Salvi, S. (2008) Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155, 791806.10.1007/s00410-007-0271-zCrossRefGoogle Scholar
Vieira, R., Roda-Robles, E., Pesquera, A. and Lima, A. (2011) Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). American Mineralogist, 96, 637645.10.2138/am.2011.3584CrossRefGoogle Scholar
Wang, R.C., Hu, H., Zhang, A.C., Fontan, F., De Parseval, P. and Jiang, S.Y. (2007) Cs-dominant polylithionite in the Koktokay#3 pegmatite, Altai, NW China: in situ micro-characterization and implication for the storage of radioactive cesium. Contributions to Mineralogy and Petrology, 153, 355367.10.1007/s00410-006-0151-yCrossRefGoogle Scholar
Xie, L., Wang, R-C., Groat, L.A., Zhu, J-C., Huang, F-F. and Cempírek, J. (2015) A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn-Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): the role of fluorine in origin of tin mineralization. Ore Geology Reviews, 65, 779792.10.1016/j.oregeorev.2014.08.013CrossRefGoogle Scholar
Zhu, Z., Wang, R., Marignac, C., Cuney, M., Mercadier, J., Che, X. and Lespinasse, M-Y. (2018) A new style of rare metal granite with Nb-rich mica: the early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, southeast China. American Mineralogist, 103, 15301544.10.2138/am-2018-6511CrossRefGoogle Scholar
Supplementary material: File

Breiter et al. supplementary material

Breiter et al. supplementary material
Download Breiter et al. supplementary material(File)
File 229.3 KB