Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T03:44:16.401Z Has data issue: false hasContentIssue false

Calculation of crystal field splittings in distorted coordination polyhedra: spectra and thermodynamic properties of minerals

Published online by Cambridge University Press:  05 July 2018

Bernard J. Wood
Affiliation:
Department of Geology, The University, Manchester M13 9PL, England
R. G. J. Strens
Affiliation:
School of Physics, The University, Newcastle NE1 7RU, England

Summary

A simple method has been developed for calculating the d-orbital energy levels of transition-metal ions in coordination polyhedra with both orthogonal and non-orthogonal distortions, using equations based on those derived by Ballhausen (1954). The input data are atomic coordinates, a standard value of the crystal field splitting parameter Δ at known metal-ligand distance, and the ratio of radial integrals B2/B4, which is approximately constant for a given ion. The method can be applied to polyhedra containing different ligands.

Application of the equations to the Mn3+ (M3) site in piemontite and the Fe2+ (M2) site in orthopyroxene gives calculated transition energies in good agreement with the observed band energies.

The calculations permit definite assignment of the great majority of d-d absorption bands even in multi-site phases, and enable discrimination of crystal-field and charge-transfer bands in mineral spectra. They also throw light on the fine structures of both oxygen → metal and metal → metal charge-transfer bands, and allow the calculation of crystal-field stabilization enthalpy and electronic entropy. The latter is a previously neglected energy term that contributes significantly to the energetics of reactions within and between phases containing transition-metal ions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballhausen, (C. X), 1954 Kgl, Danske Viderskab. Selslcab. Mat. Fys. Medd. 29, 318 Google Scholar
Bancroft, (G. M.) and Burns, (R. G.), 1967. Amer. Min. 52, 1278-87.Google Scholar
Basolo, (F.) and Pearson, (R. G.), 1967. Mechanisms of inorganic reactions, 2nd edn, New York (Wiley).Google Scholar
Burns, (R. G.), 1970. Minemlogical applications of crystal field theory. London (Cambridge University Press).Google Scholar
Burns, (R. G.) and Strens, (R. G. J.), 1967. Min. Mag. 36, 204-26.Google Scholar
Drickamer, (H. G.), 1965. Solid State Phys. 17, 1133.CrossRefGoogle Scholar
Dollase, (W. A.), 1969. Amer. Min. 54, 710-17.Google Scholar
Dunitz, (J. D.) and Orgel, (L. E.), 1957. Journ. Phys. Chem. Solids, 3, 318-33.CrossRefGoogle Scholar
Faye, (G. H.), Manning, (P. G.), and Nickel, (E. H.), 1968. Amer. Min. 53, 11741201.Google Scholar
Ghose (S.), , 1965. Zeits, Krist. 122, 8189.CrossRefGoogle Scholar
Robbins, (D. W.) and Strens, (R. G.), 1968. Chem. Commun. 508-9.Google Scholar
Robbins, (D. W.) 1972. Min Mag. 38, 551–63.CrossRefGoogle Scholar
Slater, (J. D.), 1930. Phys. Rev. 36, 5764.CrossRefGoogle Scholar
Strens, (R. G. J.), 1968. Abstracts, 6th general meeting., 127.Google Scholar
Strens, (R. G. J.) 1969. In Application of modern physics to the Earth and planetary interiors. Runcorn, S. K. (ed.), London (Wiley)Google Scholar
Strens, (R. G. J.) and Wood, (B. J.), 1969. Abstract, amphibole and pyroxene symposium, Blacksburg. Amer. Min. 55, 313-14.Google Scholar
White, (W. B.) and Keester, (K. L.), 1966. Ibid. 51, 555-58.Google Scholar
White, (W. B.) 1967. Ibid. 52, 1508–14.CrossRefGoogle Scholar
Wilson, (E. B.), Decius, (J. C.), and Cross, (P. C.), 1955. Molecular vibrations, l (McGraw Hill).Google Scholar
Wood, (B. J.), 1971. Ph.D. thesis, University of Newcastle upon Tyne.Google Scholar
Wood, (B. J.) 1973. In press.Google Scholar
Wood, (B. J.) and Strens, (R. G. J.), 1969. Abstract, amphibole and pyroxene symposium, Blacksburg. Amer. Min. 55, 316.Google Scholar
Wood, (B. J.) 1971. Earth Planet. Sci. Letters 11, 16.CrossRefGoogle Scholar