Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T21:31:25.077Z Has data issue: false hasContentIssue false

Bojarite, Cu3(N3C2H2)3(OH)Cl2⋅6H2O, a new mineral species with a microporous metal–organic framework from the guano deposit at Pabellón de Pica, Iquique Province, Chile

Published online by Cambridge University Press:  30 October 2020

Nikita V. Chukanov*
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Gerhard Möhn
Affiliation:
Dr.-J.-Wittemannstrasse 5, 65527Niedernhausen, Germany
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Dmitry A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 8–2, Moscow, 119071Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034St Petersburg, Russia
Joy Desor
Affiliation:
Im Langenfeld 4, 61350 Bad Homburg, Germany
*
*Author for correspondence: Nikita V. Chukanov, Email: [email protected]

Abstract

The new triazolate mineral bojarite (IMA2020-037), Cu3(N3C2H2)3(OH)Cl2⋅6H2O, is found in a guano deposit located at the Pabellón de Pica Mountain, Iquique Province, Tarapacá Region, Chile. Associated minerals are salammoniac, halite, nitratine and belloite. Bojarite occurs as blue fine-grained porous aggregates up to 1 mm × 3 mm × 5 mm combined typically in interrupted earthy crusts. The mineral is brittle. The Mohs hardness is 2. Dcalc = 2.057 g cm–3. The IR and Raman spectra show the presence of the 1,2,4-triazolate anion and H2O molecules. Bojarite is optically isotropic and n = 1.635(2) (λ = 589 nm). The chemical composition (electron-microprobe data for Na, Mg, Fe, Cu and Cl; H, C and N contents measured by gas chromatography on products of ignition at 1200°C; wt.%) is: Na 0.22, Mg 0.74, Fe 0.99, Cu 29.73, Cl 13.62, N 20.4, C 11.6, H 3.3, O (calculated by stoichiometry) 19.93, total 100.53.

The empirical formula is (Cu2.68Mg0.17Fe0.10Na0.05)Σ3(N3C2H2)2.755[(OH)][Cl2.19(H2O)3.77(OH)0.04]Σ6⋅2.3H2O. The idealised formula is Cu3(N3C2H2)3(OH)Cl2⋅6H2O. The crystal structure of bojarite was refined based on powder X-ray diffraction data, using the Rietveld method. The final agreement factors are: Rp = 0.0225, Rwp = 0.0310 and Robs = 0.0417. The new mineral is cubic, space group Fd$\bar{3}$c; a = 24.8047(5) Å, V = 15,261.6(5) Å3 and Z = 32. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%)(hkl)] are: 8.83 (31)(220), 7.19 (100)(222), 6.23 (35)(400), 5.077 (28)(422), 4.194 (28)(531), 3.584 (23)(444), 2.865 (28)(660, 751) and 2.723 (22)(753, 842).

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Peter Leverett

References

Abrahams, S.C. and Bernstein, J.L. (1965) Accuracy of an automatic diffractometer. Measurement of the sodium chloride structure factors. Acta Crystallographica, 18, 926932.CrossRefGoogle Scholar
Appleton, J.D. and Nothold, A.J.G. (2002) Local phosphate resources for sustainable development of Central and South America. Economic Minerals and Geochemical Baseline Programme Report CR/02/122/N. British Geological Survey, 95 pp.Google Scholar
Bojar, H.-P., Ottner, F., Bojar, A.V., Grigorescu, D. and Perşoiu, P. (2009) Stable isotope and mineralogical investigations on clays from the Late Cretaceous sequences, Haţeg Basin, Romania. Applied Clay Science, 45, 155163.CrossRefGoogle Scholar
Bojar, H.-P., Walter, F., Baumgartner, J. and Färber, G. (2010) Ammineite, CuCl2(NH3)2, a new species containing an ammine complex: mineral data and crystal structure. The Canadian Mineralogist, 48, 13591371.CrossRefGoogle Scholar
Bojar, H.-P., Bojar, A.V, Hałas, S. and Wójtowicz, A. (2013) K/Ar geochronology of igneous amphibole phenocrysts in Miocene to Pliocene volcaniclastics, Styrian Basin, Austria. Geological Quarterly, 57, 405416.CrossRefGoogle Scholar
Bojar, H.-P., Walter, F. and Baumgartner, J. (2017) Joanneumite, Cu(C3N3O3H2)2(NH3)2, a new mineral from Pabellón de Pica, Chile and the crystal structure of its synthetic analogue. Mineralogical Magazine, 81, 155166.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Germany, 1109 pp.CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Möhn, G., Pekov, I.V., Pushcharovsky, D.Yu. and Zadov, A.E. (2015a) Chanabayaite, Cu2(N3C2H2)2Cl(NH3,Cl,H2O,□)4, a new mineral containing triazolate anion. Geology of Ore Deposits, 57, 712720.CrossRefGoogle Scholar
Chukanov, N.V., Britvin, S.N., Möhn, G., Pekov, I.V., Zubkova, N.V., Nestola, F., Kasatkin, A.V. and Dini, M. (2015b) Shilovite, natural copper(II) tetrammine nitrate, a new mineral species. Mineralogical Magazine, 79, 613623.CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Lysenko, K.A., Belakovskiy, D.I., Färber, G., Möhn, G. and Van, K.V. (2015c) Antipinite, KNa3Cu2(C2O4)4, a new mineral species from a guano deposit at Pabellón de Pica, Chile. Mineralogical Magazine, 79, 11111121.CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Pekov, I.V., Belakovskiy, D.I. and Britvin, S.N. (2015d) Möhnite, (NH4)K2Na(SO4)2, a new guano mineral from Pabellón de Pica, Chile. Mineralogy and Petrology, 109, 643648.CrossRefGoogle Scholar
Chukanov, N.V., Zubkova, N.V., Möhn, G., Pekov, I.V., Belakovskiy, D.I., Van, K.V., Britvin, S.N. and Pushcharovsky, D.Y. (2018) Triazolite, NaCu2(N3C2H2)2(NH3)2Cl3⋅4H2O, a new mineral species containing 1,2,4-triazolate anion, from a guano deposit at Pabellón de Pica, Iquique Province, Chile. Mineralogical Magazine, 82, 10071014.CrossRefGoogle Scholar
Chukanov, N.V., Möhn, G., Pekov, I.V., Zubkova, N.V., Ksenofontov, D.A., Belakovskiy, D.I., Vozchikova, S.A., Britvin, S.N. and Desor, J. (2020a) Ammoniotinsleyite, (NH4)Al2(PO4)2(OH)⋅2H2O, a new mineral species from a guano deposit at Pabellón de Pica, Iquique Province, Chile. Mineralogical Magazine, 84, 705711.CrossRefGoogle Scholar
Chukanov, N.V., Möhn, G., Zubkova, N.V., Ksenofontov, D.A., Pekov, I.V., Agakhanov, A.A., Britvin, S.N. and Desor, J. (2020b) Bojarite, IMA 2020-037. CNMNC Newsletter No. 57; Mineralogical Magazine, 84, 791794, https://doi.org/10.1180/mgm.2020.73Google Scholar
Effenberger, H. (1984) Verfeinerung der Kristallstruktur von Kupfer(II)-hydroxichlorid, Cu(OH)Cl. Monatshefte für Chemie Chemical Monthly, 115, 725730 [in German].CrossRefGoogle Scholar
Ericksen, G.E. (1981) Geology and origin of the Chilean nitrate deposits. Geological Survey Professional Paper 1188. Washington: United States Government Printing Office. 37 pp.CrossRefGoogle Scholar
Grinshtein, V.Y., Strazdin, A.A., Grinvalde, A.K. (1970) Infrared absorption spectra of some C-halogenated 1,2,4-triazole derivatives. Chemistry of Heterocyclic Compounds, 6, 231239.CrossRefGoogle Scholar
Haasnoot, J.G. (2000) Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coordination Chemistry Reviews, 200–202, 131185.CrossRefGoogle Scholar
Nakamoto, K. (2008) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry. John Wiley & Sons, New York, 350 pp.Google Scholar
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley & Sons, The Netherlands, 424 pp.Google Scholar
Ouellette, W., Yu, M.H., O'Connor, C.J., Hagrman, D. and Zubieta, J. (2006) Hydrothermal chemistry of the copper–triazolate system: A microporous metal–organic framework constructed from magnetic {Cu33-OH)(triazolate)3}2+ building blocks, and related materials. Angewandte Chemie, International Edition, 45, 34973500.CrossRefGoogle ScholarPubMed
Ouellette, W., Jones, S. and Zubieta, J. (2011) Solid state coordination chemistry of metal-1,2,4-triazolates and the related metal-4-pyridyltetrazolates. Crystal Engineering Communications, 13, 44574485.CrossRefGoogle Scholar
Pankhurst, R.J. and Herve, F. (2007) Introduction and overview. In: The Geology of Chile (Moreno, T.. And Gibbons, W., editors). The Geological Society London. 414 pp.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. Structure Determination Software Programs. Institute of Physics, Prague, Czech Republic.Google Scholar
Yamada, T., Maruta, G. and Takeda, S. (2011) Reversible solid-state structural conversion between a three-dimensional network and a one-dimensional chain of Cu(II) triazole coordination polymers in acidic/basic-suspensions or vapors. Chemical Communications, 47, 653655.CrossRefGoogle ScholarPubMed
Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Möhn, G., Giester, G., Yapaskurt, V.O., Lykova, I.S. and Pushcharovsky, D.Yu. (2016) The crystal structure of the natural 1,2,4-triazolate compound NaCu2Cl3 [N3C2H2]2[NH3]2⋅4H2O. Zeitschrift für Kristallographie, 231, 4754.Google Scholar
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material

Download Chukanov et al. supplementary material(File)
File 920 KB