Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T23:07:43.216Z Has data issue: false hasContentIssue false

Bobcookite, NaAl(UO2)2(SO4)4·18H2O and wetherillite, Na2Mg(UO2)2(SO4)4·18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  02 January 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt, 18-2, 119071, Moscow, Russia
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
*

Abstract

The new minerals bobcookite (IMA 2014-030), NaAl(UO2)2(SO4)4·18H2O and wetherillite (IMA 2014-044), Na2Mg(UO2)2(SO4)4·18H2O, were found in the Blue Lizard mine, San Juan County, Utah, USA, where they occur together as secondary alteration phases in association with boyleite, chalcanthite, dietrichite, gypsum, hexahydrite, johannite, pickeringite and rozenite.

Bobcookite descriptive details: lime green to greenish-yellow massive veins and columnar crystals; transparent; vitreous lustre; bright greenish-white fluorescence; pale greenish yellow streak; hardness (Mohs) 2½; brittle; conchoidal fracture; no cleavage; moderately hygroscopic; easily soluble in cold H2O; densitycalc = 2.669 g cm–3. Optically, biaxial (–), α = 1.501(1), β = 1.523(1), γ = 1.536(1) (white light); 2Vmeas. = 78(1)°; 2Vcalc. = 74°; dispersion r < v, moderate. Pleochroism: X colourless, Y very pale yellow-green, Z pale yellow-green; X < Y < Z. EDS analyses yielded the empirical formula Na0.97Al1.09(U1.02O2)2(S0.98O4)4(H2O)18. Bobcookite is triclinic, P1, a = 7.7912(2), b = 10.5491(3), c = 11.2451(8) Å , α = 68.961(5), β = 70.909(5), γ = 87.139(6)°, V = 812.79(8) Å3 and Z = 1. The structure (R1 = 1.65% for 3580 Fo > 4σF) contains [(UO2)(SO4)2(H2O)] chains linked by NaO4(H2O)2 octahedra to form layers. Hydrogen bonds to insular Al(H2O)6 octahedra and isolated H2O groups hold the structure together. The mineral is named for Dr Robert (Bob) B. Cook of Auburn University, Alabama, USA.

Wetherillite descriptive details: pale greenish-yellow blades; transparent; vitreous lustre; white streak; hardness (Mohs) 2; brittle; two cleavages, {101} perfect and {010} fair; conchoidal or curved fracture; easily soluble in cold H2O; densitycalc = 2.626 g cm–3. Optically, biaxial (+), α = 1.498(1), β = 1.508(1), γ = 1.519(1) (white light); 2Vmeas. = 88(1)°, 2Vcalc. = 87.9°; dispersion is r < v, distinct; optical orientation: Z = b, Xa = 54° in obtuse β; pleochroism: X colourless, Y pale yellow-green, Z pale yellow-green; X < YZ. EDS analyses yielded the empirical formula Na1.98(Mg0.58Zn0.24Cu0.11Fe0.092+)Σ1.02(U1.04O2)2(S0.98O4)4(H2O)18. Wetherillite is monoclinic, P21/c, a = 20.367(1), b = 6.8329(1), c = 12.903(3) Å, β = 107.879(10)°, V = 1709.0(5) Å3 and Z = 2. The structure (R1 = 1.39% for 3625 Fo > 4σF) contains [(UO2)(SO4)2(H2O)] sheets parallel to {100}. Edge-sharing chains of Na(H2O)5O polyhedra link adjacent uranyl sulfate sheets forming a weakly bonded three-layer sandwich. The sandwich layers are linked to one another by hydrogen bonds through insular Mg(H2O)6 octahedra and isolated H2O groups. The mineral is named for John Wetherill (1866–1944) and George W. Wetherill (1925–2006).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allgre, C. (2009) George Wetherill. Proceedings of the American Philosophical Society, 153, 128130.Google Scholar
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Boss, P.A. (2006) Obituary: George West Wetherill, 1925-2006. Bulletin of the American Astronomical Society, 38, 12841285.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Burns, P.C., Deely, K.M. and Hayden, L.A. (2003) The crystal chemistry of the zippeite group. The Canadian Mineralogist, 41, 687706.CrossRefGoogle Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Miscellaneous Publication 93-3, Utah Geological Survey, Salt Lake City, Utah, USA.Google Scholar
Frondel, C., Ito, J., Honea, R.M. and Weeks, A.M. (1976) Mineralogy of the zippeite group, The Canadian Mineralogist, 14, 429436.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo. Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2014) Belakovskiite, Na7(UO2)(SO4)4(SO3OH) (H2O)3, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 78, 639649.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015a) Fermiite, Na4(UO2)(SO4)3·3H2O, Blue Lizard Mine, Red Canyon, White Canyon District, San Juan Co., Utah, USA. Mineralogical Magazine, 79, 695714.CrossRefGoogle Scholar
Kampf, A.R., Kasatkin, A.V., Čejka, J. and Marty, J. (2015b) Plášilite, Na(UO2)(SO4)(OH)·2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 60, 110.CrossRefGoogle Scholar
Kasatkin, A.V., Nestola, F., Plášil, J., Marty, J., Belakovskiy, D.I., Agakhanov, A.A., Mills, S.J., Pedron, D., Lanza, A., Favaro, M., Bianchin, S., Lykova, I.S., Goliáš, V. and Birch, W.D. (2013) Manganoblödite, Na2Mn(SO4)2·4H2O, and cobaltoblo ¨ dite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 367383.CrossRefGoogle Scholar
Krivovichev, S.V. (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo)-structural diversity, nanoscale chemistry, and cellular automata modeling. European Journal of Inorganic Chemistry, 2010, 25942603.CrossRefGoogle Scholar
Krivovichev, S.V. (2013) Crystal chemistry of uranium oxides and minerals. Pp. 611640. in: Comprehensive Inorganic Chemistry II, Vol 2 (J. Reedijk and K. Poeppelmeier, editors). Elsevier, Oxford, UK.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Ling, J., Sigmon, G.E., Ward, M., Roback, N. and Burns, P.C. (2010) Syntheses, structures, and IR spectroscopic characterization of new uranyl sulfate/ selenate 1D-chain, 2D-sheet and 3D framework. Zeitschrift für Kristallographie, 225, 230239.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship-Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59, 99114.CrossRefGoogle Scholar
Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jehlička, J. and Novák, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U-O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.CrossRefGoogle ScholarPubMed
Plášil., J., Kampf, A.R., Kasatkin, A.V., Marty, J., Škoda, R., Silva, S. and Čejka, J. (2013) Meisserite, Na5(UO2)(SO4)3(SO3OH)(H2O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 29752988.CrossRefGoogle Scholar
Plášil, J., Kampf, A.R., Kasatkin, A.V. and Marty, J. (2014) Bluelizardite, Na7(UO2)(SO4)4Cl(H2O)2, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 59, 145158.CrossRefGoogle Scholar
Plášil, J., Hloušek, J., Kasatkin, A.V., Škoda, R., Novák, M. and Čejka, J. (2015) Geschieberite, K2(UO2) (SO4)2(H2O)2, a new uranyl sulfate mineral from Jáchymov. Mineralogical Magazine, 79, 205216.CrossRefGoogle Scholar
Quilès, F. and Burneau, A. (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vibrational Spectroscopy, 18, 6175.CrossRefGoogle Scholar
Schindler, M. and Hawthorne, F.C. (2001) A bondvalence approach to the structure, chemistry, and paragenesis of hydroxyl-hydrated oxysalt minerals. I. Theory. The Canadian Mineralogist, 39, 12251242.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Tabachenko, V.V., Serezhkin, V.I., Serezhkina, L.B. and Kovba, L.M (1979) Crystal structure of manganese sulfat our anylate MnUO2(SO4) 2(H2O)5. Koordinatsionnaya Khimiya, 5, 15631568.Google Scholar
Thaden, R.E., Trites, A.F. Jr., and Finnell, T.L. (1964) Geology and ore deposits of the White Canyon area, San Juan and Garfield Counties, Utah. United States Geological Survey Bulletin, 1125, pp. 166.Google Scholar
Unruh, D., Gojdas, K., Flores, E., Libo, A. and Forbes, T. (2013) Synthesis and structural characterization of hydrolysis products within the uranyl iminodiacetate and malate systems. Inorganic Chemistry, 52, 1019110198.CrossRefGoogle ScholarPubMed
Volkovich, V.A., Griffiths, T.R., Fray, D.J. and Fields, M. (1998) Vibrational spectra of alkali metal Li, Na and K uranates and consequent assignment of uranate ion site symmetry. Vibrational Spectroscopy, 17, 8391.CrossRefGoogle Scholar
Welles, S.P. (1954) New Jurassic dinosaur from the Kayenta formation of Arizona. Bulletin of the Geological Society of America, 65, 591598.CrossRefGoogle Scholar
Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. Inorganic Chemistry, 38, 39263930.CrossRefGoogle Scholar