Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T17:07:54.984Z Has data issue: false hasContentIssue false

Belakovskiite, Na7(UO2)(SO4)4(SO3OH)(H2O)3, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  05 July 2018

A. R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
J. Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
A. V. Kasatkin
Affiliation:
V/O "Almazjuvelirexport", Ostozhenka Street, 22, Block 1, 119034 Moscow, Russia
J. Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA

Abstract

The new mineral belakovskiite (IMA2013-075), Na7(UO2)(SO4)4(SO3OH)(H2O)3, was found in the Blue Lizard mine, Red Canyon, White Canyon district, San Juan County, Utah, USA, where it occurs as a secondary alteration phase in association with blödite, ferrinatrite, kröhnkite, meisserite and metavoltine. Crystals of belakovskiite are very pale yellowish-green hair-like fibres up to 2 mm long and usually no more than a few mm in diameter. The fibres are elongated on [100] and slightly flattened on {021}. Crystals are transparent with a vitreous lustre. The mineral has a white streak and a probable Mohs hardness of ∼2. Fibres are flexible and elastic, with brittle failure and irregular fracture. No cleavage was observed. The mineral is readily soluble in cold H2O. The calculated density is 2.953 g cm−3. Optically, belakovskiite is biaxial (+) with α = 1.500(1), β = 1.511(1) and γ = 1.523(1) (measured in white light). The measured 2V is 87.1(6)° and the calculated 2V is 88°. The mineral is non-pleochroic. The partially determined optical orientation is Xa. Electron-microprobe analysis provided Na2O 21.67, UO3 30.48, SO3 40.86, H2O 6.45 (structure), total 99.46 wt.% yielding the empirical formula Na6.83(U1.04O2)(SO4)4(S0.99O3OH)(H2O)3 based on 25 O a.p.f.u. Belakovskiite is triclinic, P, with a = 5.4581(3), b = 11.3288(6), c = 18.4163(13) Å, α = 104.786(7)°, β = 90.092(6)°, γ = 96.767(7)°, V = 1092.76(11) Å3 and Z = 2. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 8.96(35)(002), 8.46(29)(011), 5.19(100)(01,101,10), 4.66(58)(013,02,0,110), 3.568(37)(120,023,005,03), 3.057(59)(06,15,31), 2.930(27)(multiple) and 1.8320(29)(multiple). The structure, refined to R1 = 5.39% for 3163 Fo > 4σF reflections, contains [(UO2)(SO4)4(H2O)]6− polyhedral clusters connected via an extensive network of Na−O bonds and H bonds involving eight Na sites, three other H2O sites and an SO3OH (hydrosulfate) group. The 3-D framework, thus defined, is unique among known uranyl sulfate structures. The mineral is named for Dmitry Ilych Belakovskiy, a prominent Russian mineralogist and Curator of the Fersman Mineralogical Museum.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belakovskiy, D.I., Pautov, L.A., Sokolova, E., Hawthorne, F.C. and Mokhov, A.V. (2006) Holfertite, a new hydroxyl-hydrated uranium titanate from Starvation Canyon, Thomas Range, Utah. Mineralogical Record, 37, 311317.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Burns, P.C. and Hayden, L.A. (2002) A uranyl sulfate cluster in Na10[(UO2)(SO4)4](SO4)2·3H2O. Acta Crystallographica, C58, i121–i123.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Miscellaneous Publication 93-3, Utah Geological Survey, Salt Lake City, Utah, USA.Google Scholar
Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91–179 in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R.J. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Hayden, L.A. and Burns, P.C. (2002a) The sharing of an edge between a uranyl pentagonal bipyramid and sulfate tetrahedron in the structure of KNa5 [(UO2)(SO4)4](H2O). The Canadian Mineralogist, 40, 211216.CrossRefGoogle Scholar
Hayden, L.A. and Burns, P.C. (2002b) A novel uranyl sulfate cluster in the structure of Na6(UO2) (SO4)4(H2O)2. Journal of Solid State Chemistry, 163, 313318.CrossRefGoogle Scholar
Higashi, T. (2001) ABSCOR. RigakuCorporation, Tokyo.Google Scholar
Kasatkin, A.V., Nestola, F., Plášil, J., Marty, J., Belakovskiy, D.I., Agakhanov, A.A., Mills, S.J., Pedron, D., Lanza, A., Favaro, M., Bianchin, S., Lykova, I.S., Goliáš, V. and Birch, W.D. (2013) Manganoblödite, Na2Mn(SO4)2·4H2O and cobaltoblödite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 367383.CrossRefGoogle Scholar
Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and Crystallography of Uranium. Pp. 7–14 in: Uranium: From Cradle to Grave (P.C. Burns, and G.E. Sigmon, editors). MAC Short Course Vol. 43. Mineralogical Association of Canada, Winnipeg 2013.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J. and Šrein, V. (2003) Geology and hydrothermal vein system of the Jáchymov (Joachimsthal) ore district. Journal of the Czech Geological Society, 48, 318.Google Scholar
Plášil, J., Kampf, A.R., Kasatkin, A.V., Marty, J. Škoda, R., Silva, S. and Čejka, J. (2013) Meisserite, Na5(UO2)(SO4)3(SO3OH)(H2O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 29752988.CrossRefGoogle Scholar
Plášil, J., Kampf, A.R., Kasatkin, A.V. and Marty, J. (2014) Bluelizardite, Na7(UO2)(SO4)4Cl(H2O)2, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 58, http://dx.doi.org/10.3190/jgeosci.159.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Thaden, R.E., Trites, A.F. Jr. and Finnell, T.L. (1964) Geology and ore deposits of the White Canyon area, San Juan and Garfield Counties, Utah. Bulletin, 1125, United States Geological Survey, Washington, D.C.Google Scholar
Tvrdý, J. and Plášil, J. (2010) Jáchymov – Reiche Erzlagerstätte und Radonbad im böhmischen Westerzgebirge. Aufschluss, 61, 277292.Google Scholar
Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. Inorganic Chemistry, 38, 39263930.CrossRefGoogle Scholar