Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T16:48:53.242Z Has data issue: false hasContentIssue false

Behaviour of ThSiO4 during hydrothermal alteration of raremetal rich lithologies from peralkaline rocks

Published online by Cambridge University Press:  02 January 2018

R. Macdonald*
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089 Warsaw, Poland Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
B. Bagiński
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, 02-089 Warsaw, Poland
P. M. Kartashov
Affiliation:
Institute of Ore Deposits, Russian Academy of Sciences, Moscow 119107, Russia
D. Zozulya
Affiliation:
Geological Institute, Kola Science Centre, Russian Academy of Sciences, Apatity, Russia
*

Abstract

The behaviour of ThSiO4 during low-temperature alteration has significance for element mobility and redistribution. Here we describe five types of alteration of ThSiO4 by hydrothermal fluids: (1) primary ThSiO4 associated with chevkinite-(Ce) in a quartz-epidote metasomatite; (2) during alteration of monazite-(Ce) in a quartzolite; (3) during alteration of fergusonite-(Y) in a quartz-epidote metasomatite; (4) following exsolution from chevkinite-(Ce); and (5) associated with cerite-(Ce) and with ilmenite and bastnäsite-(Ce) in late-stage veinlets in a syenitic pegmatite and a metasomatite. The great majority of crystals have been strongly altered compositionally, with variable degrees of replacement of formula elements by non-formula elements, such as Ca, Fe, P and REE. The most reliable geochemical indicators of hydrothermal alteration are low analytical totals and non-stoichiometric structural formulae. The alteration is variably ascribed to dissolution-reprecipitation and pervasive fluid infiltration along cracks. Thorium appears to have shown limited mobility in these samples.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aines, R.D. and Rossman, G.R. (1986) Relationships between radiation damage and trace water in zircon, quartz, and topaz. American Mineralogist, 71, 11861193.Google Scholar
Andreev, G.V and Ripp, G.S. (1996) Rare-metal epidote-quartz metasomatites of the Khaldzan Buregteg massif. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 125, 2430 [in Russian].Google Scholar
Baginski, B., Macdonald, R., Dzierżanowski, P., Zozulya, D. and Kartashov, P. (2015) Hydrothermal alteration of chevkinite-group minerals: products and mechanisms. Part 1. Hydration of chevkinite-(Ce). Mineralogical Magazine, 79, 10191037.CrossRefGoogle Scholar
Baginski, B., Zozulya, D., Macdonald, R., Kartashov, P. M. and Dzierżanowski, P. (2016) Low-temperature hydrothermal alteration of a rare-metal rich quartz-epidote metasomatite from the El'ozero deposit, Kola Peninsula, Russia. European Journal of Mineralogy, 28, 789810.CrossRefGoogle Scholar
Berger, A., Gnos, E., Janots, E., Fernandez, A. and Giese, J. (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications for geochronology and low-temperature processes. Chemical Geology, 254, 238248.CrossRefGoogle Scholar
Breiter, K., Čopjaková, R. and Škoda, R. (2009) The involvement of F, CO2, and As in the alteration of Zr-Th-REE-bearing accessory minerals in the Hora Svaté Kateriny A-type granite, Czech Republic. The Canadian Mineralogist, 47, 13751398.CrossRefGoogle Scholar
Broska, I., Petrík, I. and Williams, C.T. (2000) Coexisting monazite and allanite in peraluminous granitoids of the Tribeč Mountains, Western Carpathians. American Mineralogist, 85, 2232.CrossRefGoogle Scholar
Cocherie, A. and Legendre, O. (2007) Potential minerals for determining U-Th-Pb chemical age using electron microprobe. Lithos, 93, 288309.CrossRefGoogle Scholar
Finch, R.J., Hanchar, J.M., Hoskin, R.W.O. and Burns, P. C. (2001) Rare earth elements in synthetic zircon. Part 2. A single-crystal X-ray study of the xenotime substitution. American Mineralogist, 86, 681689.CrossRefGoogle Scholar
Finch, R.J. and Hanchar, J.M. (2003) Structure and chemistry of zircon and zircon group minerals. Pp. 126 in: Zircon (Hanchar, J.W. and Hoskin, P.W.O., editors). Reviews in Mineralogy and Geochemistry, 53. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Förster, H.-J. (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzegebirge-Fichtelgebirge region, Germany, Part 1: The monazite-(Ce)-brabantite solid solution series. American Mineralogist, 83, 259272.CrossRefGoogle Scholar
Förster, H.-J. (2006) Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffinite. Lithos, 88, 3555.CrossRefGoogle Scholar
Förster, H.-J., Harlov, D.E. and Milke, R. (2000) Composition and Th-U-total Pb ages of huttonite and thorite from Gillespie's Beach, South Island, New Zealand. The Canadian Mineralogist, 38, 675684.CrossRefGoogle Scholar
Gieré, R. and Sorensen, S.S. (2004) Allanite and other REE-rich epidote-group minerals. Pp. 431493 in: Epidotes (Liebscher, A. and Franz, G., editors). Reviews in Mineralogy and Geochemistry, 56. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hanchar, J.M., Finch, R.J., Hoskin, P.W.O., Watson, E.B., Cherniak, D.J. and Mariano, A.N. (2001) Rare earth elements in synthetic zircon. Part 1. Synthesis, and rare earth and phosphorous doping. American Mineralogist, 86, 667680.CrossRefGoogle Scholar
Harlov, D.E. and Hetherington, C.J. (2010) Partial high-grade alteration of monazite using alkali-bearing fluids: Experiment and nature. American Mineralogist, 95, 11051108.CrossRefGoogle Scholar
Harlov, D.E., Wirth, R. and Hetherington, C.J. (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162, 329348.CrossRefGoogle Scholar
Hetherington, C.J. and Harlov, D.E. (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry. American Mineralogist, 93, 806820.CrossRefGoogle Scholar
Johan, Z. and Johan, V (2005) Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution. Mineralogy and Petrology, 83, 113150.CrossRefGoogle Scholar
Kovalenko, V.I., Tsaryeva, G.M., Goreglad, A.V., Yarmolyuk, V.V., Troitsky, V.A., Hervig, R.L. and Farmer, G.L. (1995) The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, Western Mongolia. Economic Geology, 90, 530547.CrossRefGoogle Scholar
Lumpkin, G.R. and Chakoumakos, B.C. (1988) Chemistry and radiation effects of thorite-group minerals from the Harding pegmatite, Taos County, New Mexico. American Mineralogist, 73, 14051419.Google Scholar
Macdonald, R., Baginski, B., Kartashov, P.M., Zozulya, D. and Dzierżanowski, P. (2012) Chevkinite-group minerals from Russia and Mongolia: new compositional data from fenites, metasomatites and ore deposits. Mineralogical Magazine, 76, 535549.CrossRefGoogle Scholar
Macdonald, R., Baginski, B., Kartashov, P.M., Zozulya, D. and Dzierżanowski, P. (2015a) Hydrothermal alteration of chevkinite-group minerals. Part 2. Metasomatite from the Keivy massif, Kola Peninsula, Russia. Mineralogical Magazine, 79, 10391059.CrossRefGoogle Scholar
Macdonald, R., Baginski, B., Kartashov, P.M., Zozulya, D., Dzierżanowski, P. and Jokubauskas, P. (2015b) Hydrothermal alteration of a chevkinite-group mineral to a bastnäsite-(Ce)-ilmenite-columbite-(Fe) assemblage: interaction with a F-, CO2-rich fluid. Mineralogy and Petrology, 109, 659678.CrossRefGoogle Scholar
Macdonald, R., Baginski, B., Kartashov, P.M., Zozulya, D. and Dzierżanowski, P. (2015c) Interaction of rare-metal minerals with hydrothermal fluids; evidence from quartz-epidote metasomatites of the Haldzan Buragtag massif, Mongolian Altai. The Canadian Mineralogist, 53, 10151034.CrossRefGoogle Scholar
Mazeina, L., Ushakov, S.V., Navrotsky, A. and Boatner, L. A. (2005) Formation enthalpy of ThSiO4 and enthalpy of the thorite-huttonite transition. Geochimica et Cosmochimica Acta, 69, 46754683.CrossRefGoogle Scholar
Meldrum, A., Zinkle, S.J., Boatner, L.A. and Ewing, R.C. (1999) Heavy-ion irradiation effects in the ABO4orthosilicates: Decomposition, amorphization, and recrystallization. Physical Review, B 59, 39813992.CrossRefGoogle Scholar
Mitrofanov, F.P., Zozulya, D.R., Bayanova, T.B., Levkovich, N.V (2000) The world's oldest anorogenic alkali granitic magmatism in the Keivy Structure on the Baltic Shield. Doklady Earth Sciences, 374, 11451149.Google Scholar
Oelkers, E.H. and Poitrasson, F. (2002) An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230°C and Ph from 1.5 to 10. Chemical Geology, 191, 7387.CrossRefGoogle Scholar
Ondrejka, M., Uher, P., Putiš, M., Broska, I., Bačik, P., Konečný, P. and Schmiedt, I. (2012) Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos, 142–143, 245258.CrossRefGoogle Scholar
Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia) Part II: Evolving zircon and thorite trace element chemistry. Chemical Geology, 220, 191213.CrossRefGoogle Scholar
Piilonen, EC, Rowe, R., Poirier, G., Grice, J.D. and McDonald, A.M. (2013) Crystal structure determination of a unique Nb-Ti-rich thorite from Mont Saint-Hilaire, Quebec, with comments on ‘thorogum-mite'. The Canadian Mineralogist, 51, 597612.CrossRefGoogle Scholar
Pointer, C.M., Ashworth, J.R. and Ixer, R.A. (1988) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria 1. Geochemistry and metastable solid solution of thorite and coffinite. Mineralogy and Petrology, 38, 245262.CrossRefGoogle Scholar
Poitrasson, F., Hanchar, J.M. and Schaltegger, U. (2002) The current state and future of accessory mineral research. Chemical Geology, 191, 124.CrossRefGoogle Scholar
Prol-Ledesma, R.-M., Melgarejo, J.C and Martin, R.F. (2012) The El Muerto ‘NYF’ granitic pegmatite, Oaxaca, Mexico, and its striking enrichment in allanite-(Ce) and monazite-(Ce). The Canadian Mineralogist, 50, 10551076.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, J.F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP'. Pp. 3175 in: Electron Probe Quantitation (H. Newbury, editor). Plenum Press, New York.CrossRefGoogle Scholar
Rasmussen, B. and Muhling, J.R. (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contributions to Mineralogy and Petrology, 154, 675689.CrossRefGoogle Scholar
René, M. (2014) Composition of coexisting zircon and xenotime in rare-metal granites from the Krušné Hory/ Erzgebirge Mts. (Saxothuringian Zone, Bohemian Massif). Mineralogy and Petrology, 108, 551569.CrossRefGoogle Scholar
Rubin, J.N., Henry, C.D. and Price, J.G. (1989) Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. American Mineralogist, 74, 865869.Google Scholar
Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J.-L., Janots, E. and Wirth, R. (2012) Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation-damage, and disturbance of the U-Pb and Th-Pb chronometers. Chemical Geology, 330–331, 140158.CrossRefGoogle Scholar
Seydoux-Guillaume, A.-M., Wirth, R. and Ingrin, J. (2007) Contrasting response of ThSiO4 and monazite to natural irradiation. European Journal of Mineralogy, 19, 714.CrossRefGoogle Scholar
Shein, I.R., Shein, K.I. and Ivanovskii, A.L. (2006) Thorite versus huttonite: stability, electronic properties and X-ray emission spectra from first-principle calculations. Physics and Chemistry of Minerals, 33, 545552.CrossRefGoogle Scholar
Skridlaite, G., Bogdanova, S., Taran, L. and Baginski, B. (2014) Recurrent high grade metamorphism recording a 300 Ma long Proterozoic crustal evolution in the western part of the East European Craton. Gondwana Research, 25, 649667.CrossRefGoogle Scholar
Soman, A., Geisler, T., Tomaschek, F., Grange, M. and Berndt, J. (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contributions to Mineralogy and Petrology, 160, 909930.CrossRefGoogle Scholar
Starijas-Mayer, B.S., Krenn, E. and Finger, F (2014) Microcrystals of Th-rich monazite (La) with a negative Ce anomaly in metadiorite and their role for documenting Cretaceous metamorphism in the Slavonian Mountains (Croatia). Mineralogy and Petrology, 108, 231243.CrossRefGoogle Scholar
Sun, S.-S. and McDonough, W.F (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Pp. 313345 in: Magmatism in the Ocean Basins (Saunders, A.D. and Norry, M.J., editors). Special Publication of the Geological Society, 42. Geological Society, London.Google Scholar
Tomašic, N., Gajovic, A., Bermanec, V., Su, D.S., Rajic Linaric, M., Ntaflos, T. and Schlögl, R. (2006) Recrystallization mechanisms of fergusonite from metamict mineral precursors. Physics and Chemistry of Minerals, 33, 145159.CrossRefGoogle Scholar
Uher, P., Ondrejka, M. and Konečny, P. (2009) Magmatic and post-magmatic Y-REE-Th phosphate, silicate and Nb-Ta-Y-REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia. Mineralogical Magazine, 73, 10091025.CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C. and Wang, L.M. (1994) The radiation-induced crystalline-to amorphous transition in zircon. Journal of Materials Research, 9, 688698.CrossRefGoogle Scholar
Wood, S.A. and Williams-Jones, A.E. (1994) The aqueous geochemistry of the rare-earths and yttrium. 4. Monazite solubility and REE mobility in exhalative massive-sulfide depositing environments. Chemical Geology, 115, 4760.CrossRefGoogle Scholar
Xie, L., Wang, R.C., Wang, D.Z. and Qiu, J.S. (2006) A survey of accessory mineral assemblages in peralka-line and more aluminous A-type granites of the southeast coastal area of China. Mineralogical Magazine, 70, 709729.CrossRefGoogle Scholar
Zozulya, D.R. and Eby, G.N. (2010) Rare-metal ore occurrences, related to the Late Archean A-type granites from the Keivy zone (NE Fennoscandian shield). Pp. 113115 in: International Conference on A-type Granites and Related Rocks Through Time (IGCP 510). Helsinki, August 18-20, 2010 (O.T. Ramo, S.R. Lukari and Heinonen, A.P., editors). Abstract Volume.Google Scholar
Zozulya, D.R., Bayanova, T.B. and Eby, G.N. (2005) Geology and age of the Late Archean Keivy alkaline province, northeastern Baltic Shield. Journal of Geology, 113, 601608.CrossRefGoogle Scholar
Supplementary material: File

Macdonald et al. supplementary material

Supplementary Data

Download Macdonald et al. supplementary material(File)
File 167.9 KB