Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T19:25:11.523Z Has data issue: false hasContentIssue false

Basalt petrology, zircon ages and sapphire genesis from Dak Nong, southern Vietnam

Published online by Cambridge University Press:  05 July 2018

V. Garnier*
Affiliation:
CRPG/CNRS, UPR 2300, BP 20, 15 rue Notre-Dame des Pauvres, 54501 Vandoœuvre-lès-Nancy Cedex, France
D. Ohnenstetter
Affiliation:
CRPG/CNRS, UPR 2300, BP 20, 15 rue Notre-Dame des Pauvres, 54501 Vandoœuvre-lès-Nancy Cedex, France
G. Giuliani
Affiliation:
CRPG/CNRS, UPR 2300, BP 20, 15 rue Notre-Dame des Pauvres, 54501 Vandoœuvre-lès-Nancy Cedex, France IRD, UR154, LMTG, 14 avenue Edouard Belin, 34100 Toulouse, France
A. E. Fallick
Affiliation:
Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride G75 0QF, Scotland
T. Phan Trong
Affiliation:
Institute of Geological Sciences, CNST, Nghia Dô, Câu Giây, Hanoi, Vietnam
V. Hoàng Quang
Affiliation:
Institute of Geological Sciences, CNST, Nghia Dô, Câu Giây, Hanoi, Vietnam
L. Pham Van
Affiliation:
Vietnam National Gem and Gold Corporation, 91 Dinh Tien Hoang Street, Hanoi, Vietnam
D. Schwarz
Affiliation:
Gübelin Gemmological Laboratory, 102 Maihofstrasse, CH-6000 Lucerne 9, Switzerland
*

Abstract

Basalts associated with sapphire deposits are widespread in Europe, Africa, Asia and Australia. In Vietnam, blue, green and yellow sapphires are recovered from eluvial and alluvial placers hosted in basaltic fields of the Dak Lak Province. Two distinct basalt suites are recognized in this field: a tholeiitic suite without any xenocrysts and an alkaline suite with mantle and lower crustal xenocrysts. The sapphires are enriched in Fe (0.43 to 1.26 wt.%), with moderate contents of Cr (33–1582 ppm), Ti (35–1080 ppm), Ga (149–308 ppm) and V (28–438 ppm) and they are poor in Zn and Mg. Their O-isotope compositions range from 6.0 to 6.9% and are not in equilibrium with the alkali basalts which have δ18O values between 5.0 and 5.7%. The U-Pb dating of zircons recovered from the basaltic placers provides evidence of two eruptional events: one at ~6.5 Ma followed by another one at ~1 Ma. The petrography of the basalts and the oxygen isotopic composition of the sapphires suggest that the sapphires are xenocrysts and that they crystallized in a deep magma chamber, at the lower continental lithosphere and the upper mantle boundary, in evolved melts issued from the fractionation of alkali basaltic magmas contaminated with lower crustal fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: INRS-ETE, 490 rue de la Couronne, Québec, Canada G1K 9A9

References

Aspen, P., Upton, B.G.J. and Dickin, A.P. (1990) Anorthoclase, sanidine and associated megacrysts in Scottish alkali basalts: high-pressure syenitic debris from upper mantle sources? European Journal of Mineralogy, 2, 503517.CrossRefGoogle Scholar
Barr, S.M. and MacDonald, A.S. (1979) Palaeomagnetism, age and geochemistry of the Den Chai basalt, northern Thailand. Earth and Planetary Science Letters, 26, 113124.CrossRefGoogle Scholar
Barr, S.M. and MacDonald, A.S. (1981) Geochemistry and geochronology of late Cenozoic basalts of southeast Asia. Geological Society of America Bulletin, 92, 10691142.CrossRefGoogle Scholar
Barry, T.L., Saunders, A.D., Kempton, P.D., Windley, B.F., Pringle, M.S., Dorjnamjaa, D. and Saandar, S. (2003) Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, 44, 5591.CrossRefGoogle Scholar
Bogaard, P.J.F. and Worner, G. (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. Journal of Petrology, 44, 569602.CrossRefGoogle Scholar
Chazot, G., Lowry, D., Menzies, M. and Mattey, D.(1997) Oxygen isotopic composition of hydrous mantle peridotites. Geochimica et Cosmochimica Acta, 61, 161169.CrossRefGoogle Scholar
Coenraads, R.R., Sutherland, F.L. and Kinny, P.D. (1990) The origin of sapphires: U-Pb dating of zircon inclusions sheds new light. Mineralogical Magazine, 54, 113122.CrossRefGoogle Scholar
Coenraads, R.R., Vichit, P. and Sutherland, F.L. (1995) An unusual sapphire-zircon-magnetite xenolith from the Chanthaburi Gem Province, Thailand. Mineralogical Magazine, 59, 465479.CrossRefGoogle Scholar
Corfu, F., Hanchar, J.M., Hoskin, P.W.O. and Kinny, P. (2003) Atlas of zircons textures. Pp. 469500 in: Zircon (Hanchar, J.M. and Hoskin, P.W.O., editors). Reviews in Mineralogy and Geochemistry, 53, Mineralogical Society of America, and the Geochemical Society, Washington D.C.Google Scholar
Deloule, E., Alexandrov, P., Cheilletz, A., Laumonier, B. and Barbey, P. (2002) In-situ U-Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. International Journal of Earth Science, 91, 398405.CrossRefGoogle Scholar
Evensen, N.M., Hamilton, P.J. and O'Nions, R.K. (1978) Rare-earth abundances in chondritic meteor¬ites. Geochimica et Cosmochimica Acta, 42, 11991212.CrossRefGoogle Scholar
Gaillou, E. (2003) Les saphirs du Massif Central. Diplome de DEA, Universite Blaise Pascal, Clermont-Ferrand, France, Inv. Litec N°14470, 45 pp.Google Scholar
Gamier, V. (2003) Les gisements de rubis associés aux marbres de I'Asie Centrale et du Sud-est: genèse et caracterisation isotopique. PhD thesis, Institut National Polytechnique de Lorraine, Nancy, France, 371 pp.Google Scholar
Gamier, V., Ohnenstetter, D., Giuliani, G., Blanc, Ph. and Schwarz, D. (2002) Trace-element contents and cathodoluminescence of “trapiche” rubies from Mong Hsu, Myanmar (Burma): geological significance. Mineralogy and Petrology, 76, 179193.Google Scholar
Girardeau, J. and Ibarguchi, J.I.G. (1991) Pyroxenite-rich peridotites of the Cabo Ortegal complex (Northwestern Spain): evidence for large-scale upper-mantle heterogeneity. Journal of Petrology, special Lherzolites Issue, 135154.CrossRefGoogle Scholar
Giuliani, G., Fallick, A.E., Gamier, V., France-Lanord, Ch., Schwarz, D. and Ohnenstetter, D. (2004) Oxygen isotopes a new tracer facet to rubies and sapphires’ origins. Abstracts of the 32nd International Geological Congress, Florence, Italy, CD-ROM, 142–7.Google Scholar
Guo, J., O'Reilly, S.Y. and Griffin, W.L. (1996) Corundum from basaltic terrains: a mineral inclusion approach to the enigma. Contributions to Mineralogy and Petrology, 122, 368386.CrossRefGoogle Scholar
Harmon, R.S. and Hoefs, J. (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geological settings. Contributions to Mineralogy and Petrology, 120, 95114.CrossRefGoogle Scholar
Hoang, N. and Flower, M.F.J. (1998) Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a ‘diffuse igneous province'. Journal of Petrology, 39, 369395.CrossRefGoogle Scholar
Hoang, N., Flower, M.F.J., Nguyen, X.B. and Nguyen, T.Y. (1996) Trace element and isotopic compositions of Vietnamese basalts: implications for mantle dynamics in the southeast Asian region. Bulletin de la Societé géologique de France, 167, 785795.Google Scholar
Hoefs, J. (1997) Stable Isotope Geochemistry, 4th edition. Springer-Verlag, Berlin, 201 pp.CrossRefGoogle Scholar
Hoffman, J.F and Long, J.V.P. (1984) Unusual sector zoning in Lewisian zircons. Mineralogical Magazine, 48, 513517.CrossRefGoogle Scholar
Hofmann, A.W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters, 90, 297413.CrossRefGoogle Scholar
Hoskin, P.W.O. (2000) Patterns of chaos: Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta, 64, 1905—192.CrossRefGoogle Scholar
Irving, A. (1986) Polybaric magma mixing in alkali basalts and kimberlites; evidence from corundum, zircon and ilmenite megacrysts. Abstracts of the Geological Society of Australia, 16, 262264.Google Scholar
Jobbins, E.A. and Berrangé, J.P. (1981) The Pailin ruby and sapphire gemfield, Cambodia. Journal of Gemmology, 27, 555567.CrossRefGoogle Scholar
Kerrich, R., Fyfe, W.S., Barnett, R.L., Blair, B.B. and Willmore, L.M. (1987) Corundum, Cr-muscovite rocks at O'Briens, Zimbabwe: the conjunction of hydrothermal desilicification and LIL-element enrichment - geochemical and isotopic evidence. Contributions to Mineralogy and Petrology, 95, 481498.CrossRefGoogle Scholar
Kieffer, B., Arndt, N., Lapierre, H., Bastien, F., Bosch, D., Pecher, A., Yirgu, G., Ayalew, D., Weis, D., Jerram, D.A., Keller, F. and Meugniot, C. (2004) Flood and shield basalts from Ethiopia: magmas from the African superwell. Journal of Petrology, 45, 793834.CrossRefGoogle Scholar
Komprobst, J., Piboule, M., Roden, M. and Tabit, A. (1990) Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle? Journal of Petrology, 31, 717745.CrossRefGoogle Scholar
Levinson, A.A. and Cook, F.A. (1994) Gem corundum in alkali basalt: origin and occurrence. Gems and Gemology, 30, 253262.CrossRefGoogle Scholar
Mattey, D., Lowry, D. and MacPherson, C. (1994) Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128, 231–141.CrossRefGoogle Scholar
Meschede, M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with Nb-Zr-Y diagram. Chemical Geology, 56, 207218.CrossRefGoogle Scholar
Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A., Zussman, J., Aoki, K. and Gottardi, G. (1988) Nomenclature of pyroxenes. Mineralogical Magazine, 52, 535550.CrossRefGoogle Scholar
Morishita, T. and Arai, S. (2001) Petrogenesis of corundum-bearing mafic rock in the Horoman Peridotite Complex, Japan. Journal of Petrology, 42, 12791299.CrossRefGoogle Scholar
Morishita, T. and Kodera, T. (1998) Finding of corundum-bearing gabbro boulder possibly derived from the Horoman Peridotite Complex, Hokkaidao, Northern Japan. Journal of Mineralogy, Petrology and Economic Geology, 93, 5263.CrossRefGoogle Scholar
Morishita, T., Arai, S. and Gervilla, F. (2001) High-pressure aluminous mafic rocks from the Ronda peridotite massif, Southern Spain; significance of sapphirine- and corundum-bearing mineral assem¬blages. Lithos, 57, 143161.CrossRefGoogle Scholar
Ohnenstetter, D., Cesbron, F., Rémond, G., Caruba, R. and Claude, J.M. (1991) Emissions de cathodolumi-nescence de deux populations de zircons naturels: tentative d'interprétation. Comptes Rendus de I'Académie des Sciences, Paris, Série II, 313, 641647.Google Scholar
Pham Van, L., Hoáng Quang, V., Gamier, V., Giuliani, G., Ohnenstetter, D., Lhomme, Th., Schwarz, D., Fallick, A.E., Dubessy, J. and Phan Trong, T. (2004) Gem corundum deposits in Vietnam. Journal of Gemmology, 29, 3, 129147.Google Scholar
Poldervaart, A. and Hess, H.H. (1951) Pyroxenes in the crystallisation of basaltic magma. Journal of Geology, 59, 472489.CrossRefGoogle Scholar
Rakotosamizanany, S. (2003) Les gisements de rubis de Saomiakatra: caractères minéralogiques — gemmo-logiques — conditions de formation (au Sud d'Antanifotsy). M.Sc. Thesis, University of Antananarivo, Madagascar, 74 pp.Google Scholar
Rangin, C., Huchon, P., Le Pichon, X., Bellon, H., Lepvrier, C., Roques, D., Hoe, N.D. and Quynh, P.V. (1995) Cenozoic deformation of Central and South Vietnam. Tectonophysics, 251, 180196.CrossRefGoogle Scholar
Schmetzer, K. (1987) Zur Deutung der Farbursache blauer Saphire-eine Diskussion. Neues Jahrbuch für Mineralogie Monatshefte, 8, 337343.Google Scholar
Schmetzer, K. and Bank, H. (1981) The colour of natural corundum. Neues Jahrbuch für Mineralogie Monatshefte, 11, 5968.Google Scholar
Sharp, Z.D. (1990) A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta, 54, 13531357.CrossRefGoogle Scholar
Smith, C.P., Kammerling, R.C., Keller, A.S., Peretti, A., Scarratt, K.V., Khoa, N.D. and Repetto, S. (1995) Sapphires from Southern Vietnam. Gems and Gemology, 31, 168186.CrossRefGoogle Scholar
Stacey, J.S. and Kramers, J.D. (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters, 26, 207221.CrossRefGoogle Scholar
Sutherland, F.L. and Coenraads, R.R. (1996) An unusual ruby-sapphire-saphirine-spinel assemblage from the Tertiary Barrington volcanic province, New South Wales, Australia. Mineralogical Magazine, 60, 623638.CrossRefGoogle Scholar
Sutherland, F.L. and Schwarz, D. (2001) Origin of gem corundums from basaltic fields. Australian Gemmologist, 21, 3033.Google Scholar
Sutherland, F.L., Schwarz, D., Jobbins, E.A., Coenraads, R.R. and Webb, G. (1998a) Distinctive gem corundum suites from discrete basalt field: a comparative study of Barrington, Australia and West Pailin, Cambodia, gemfields. Journal of Gemmology, 26, 6585.CrossRefGoogle Scholar
Sutherland, F.L., Hoskin, P.W.O., Fanning, CM. and Coenraads, R.R. (19986) Models of corundum origin from alkali basalt terrains: a reappraisal. Contributions to Mineralogy and Petrology, 133, 356372.CrossRefGoogle Scholar
Sutherland, F.L., Graham, I.T., Pogson, R.E., Schwarz, D., Webb, G.B., Coenraads, R.R., Fanning, CM., Hollis, J.D. and Allen, T.C. (2002) The Tumbarumba basaltic gem field, New South Wales: in relation to sapphire-ruby deposits of Eastern Australia. Records of the Australian Museum, 54, 215248.CrossRefGoogle Scholar
Sutherland, F.L., Coenraads, R.R., Schwarz, D., Raynor, L.R., Barron, B.J. and Webb, G.B. (2003) Al-rich diopside in alluvial ruby and corundum-bearing xenoliths, Australian and SE Asian basalt fields. Mineralogical Magazine, 67, 717732.CrossRefGoogle Scholar
Sutthirat, C., Saminpanya, S., Droop, G.T.R., Henderson, C.M.B. and Manning, D.A.C. (2001) Clinopyroxene-corundum assemblages from alkali-basalt and alluvium, eastern Thailand: constraints on the origin of Thai rubies. Mineralogical Magazine, 65, 277295.CrossRefGoogle Scholar
Tapponnier, P., Peltzer, G., Le Dain, A.Y., Armijo, R. and Cobbold, P. (1982) Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 7, 611616.2.0.CO;2>CrossRefGoogle Scholar
Tapponnier, P., Peltzer, G. and Armijo, R. (1986) On the mechanics of the collision between India and Asia. Pp. 115157 in: Collision Tectonics (Coward, M.P. and Ries, A.C., editors). Special Publication, 19, Geological Society of London.Google Scholar
Upton, B.G.J., Hinton, R.W., Aspen, P., Finch, A. and Valley, J.W. (1999) Megacrysts and associated xenoliths: Evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. Journal of Petrology, 40,935956.CrossRefGoogle Scholar
Whitford-Stark, J.L. (1987) A survey of Cenozoic volcanism on mainland Asia. Geological Society of America Special Paper, 213, 74 pp.Google Scholar
Yui, T.-F., Khin, Zaw and Limkatrun, P. (2003) Oxygen isotope composition of the Denchai sapphire, Thailand: a clue to its enigmatic origin. Lithos, 67, 153161.CrossRefGoogle Scholar
Zheng, Y.F. (1991) Calculation of oxygen fractionation in metal oxides. Cosmochimica Acta, 55, 22992307.Google Scholar