Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T12:40:34.906Z Has data issue: false hasContentIssue false

Barikaite, Pb10Ag3(Sb8As11)Σ19S40, a new member of the sartorite homologous series

Published online by Cambridge University Press:  05 July 2018

D. Topa*
Affiliation:
Natural History Museum Vienna, Burgring 7, A-1010 Vienna, Austria
E. Makovicky
Affiliation:
Department of Geoscience and Resource Management, University of Copenhagen, Østervoldgade 10, DK-1350, Copenhagen K, Denmark
H. Tajedin
Affiliation:
Department of Geology, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
H. Putz
Affiliation:
Department of Material Engineering and Physics, University of Salzburg, Hellbrunnerstraβe 34, A-5020 Salzburg, Austria
G. Zagler
Affiliation:
Department of Material Engineering and Physics, University of Salzburg, Hellbrunnerstraβe 34, A-5020 Salzburg, Austria
*

Abstract

Barikaite, ideally Pb10Ag3(Sb8As11)Σ19S40, is a new mineral species from the Barika Au-Ag deposit, Azarbaijan Province, western Iran. It was formed in fractures developed in silica bands situated in massive banded pyrite and baryte ores. These fractures house veinlets that contain a number of Ag-As-Sb-Pb-rich sulfosalts, tetrahedrite-tennantite, realgar, pyrite and electrum. Barikaite appears as inclusions in guettardite. The mineral is opaque, greyish black with a metallic lustre; it is brittle without any discernible cleavage. In reflected light barikaite is greyish white, pleochroism is distinct, white to dark grey. Internal reflections are absent. In crossed polars, anisotropism is distinct with rotation tints in shades of grey. The reflectance data (%, in air) are: 37.0, 39.3 at 470 nm, 34.1, 36.9 at 546 nm, 33.1, 36.2 at 589 nm and 31.3, 34.1 at 650 nm. The Mohs hardness is 3–3½, microhardness VHN50 exhibits the range 192 – 212, with a mean value of 200 kg mm–2. The average results of five electron-microprobe analyses in a grain are (in wt.%): Pb 35.77(33), Ag 5.8(1), Tl 0.15(08), Sb 18.33(09), As 15.64(16), S 24.00(15), total 99.69(10) wt.%, corresponding to Pb9.31Ag2.90Tl0.04(Sb8.12As11.26)Σ19.36S40.37 (on the basis of 32Me + 40S = 72 a.p.f.u.). The simplified formula, Pb10Ag3(Sb8As11)Σ19S40, is in accordance with the results of a crystal-structure analysis, and requires Pb 37.89, Ag 5.91, Sb 17.79, As 15.05 and S 23.42 (wt.%). The variation of chemical composition is minor, the empirical formula ranging from Pb10.39Ag2.32Tl0.02Sb7.52As11.27S40.49 to Pb9.24Ag2.93Tl0.04Sb8.13As11.35S40.31. Barikaite has monoclinic symmetry, space group P21/n and unit-cell parameters a 8.5325(7) Å, b 8.0749(7) Å, c 24.828(2) Å, and b 99.077(6)o, Z = 1. Calculated density for the empirical formula is 5.34 (g cm–3). The strongest eight lines in the (calculated) powder-diffraction pattern [d in Å(I)(hkl)] are: 3.835(63)(022), 3.646(100)(016), 3.441(60)(212), 3.408(62)(14), 2.972(66)(16), 2.769(91)(222), 2.752(78)(24) and 2.133(54)(402). Barikaite is the N = 4 member of the sartorite homologous series with a near-equal role of As and Sb, which have an ordered distribution pattern in the structure. It is a close homeotype of rathite and more distantly related to dufrénoysite (both distinct, pure arsenian N = 4 members) and it completes the spectrum of Sb-rich members of the sartorite homologous series. The new mineral and its name have been approved by the IMA-CNMNC (IMA 2012-055).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlepsch, P., Makovicky, E., and Balić-Žunić, T. (2001) Crystal chemistry of sartorite homologues and related sulfosalts. Neues Jahrbuch für Mineralogie Abhandlungen, 176, 4566.CrossRefGoogle Scholar
Berlepsch, P., Armbruster, T., and Topa, D., (2002) Structural and chemical variations in rathite, Pb8Pb4–x(Tl2As2)x(Ag2As2)As16S40: modulations of a parent structure. Zeitschrift für Kristallographie, 217, 110.Google Scholar
Berlepsch, P., Armbruster, T., Makovicky, E., and Topa, D., (2003) Another step toward understanding the true nature of sartorite: Determination and refinement of a nine-fold superstructure. American Mineralogist, 88, 450.461.CrossRefGoogle Scholar
Bracci, G., Dalena, D., Orlandi, P., Duchi, G., and Vezzalini, G., (1980) Guettardite from Tuscany, Italy: A second occurrence. The Canadian Mineralogist, 18, 1315.Google Scholar
Ciobanu, C.L., Cook, N.J., Capraru, N., Damina, G., and Cristea, P., (2005) Mineral assemblages from the vein salband at Sa˘ca˘ rimb, Golden Quadrilateral, Romania: I. Sulphides and sulphosalts. Au-Ag-Te- Se deposits, IGCP Project 486. Bulgarian Academy of Sciences; Geochemistry, Mineralogy and Petrology (Sofia), 43, 4755.Google Scholar
Engel, P. and Nowacki, W., (1969) Kristallstruktur von Baumhauerit. Zeitschrift für Kristallographie, 129,178202.CrossRefGoogle Scholar
Engel, P., and Nowacki, W., (1970) Die Kristallstruktur von Rathit-II (As25S56Pb65 viiPb12 ix ). Zeitschrift für Kristallographie, 131, 356375.CrossRefGoogle Scholar
Ferraris, G., Makovicky, E., and Merlino, S., (2008) Crystallography of Modular Materials. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Iitaka, Y. and Nowacki, W., (1961) A refinement of the pseudo crystal structure of scleroclase PbAs2S4. Acta Crystallographica 14, 12911292.CrossRefGoogle Scholar
Jambor, J.L. (1967a) New lead sulfantimonides from Madoc, Ontario – Part 1. The Canadian Mineralogist, 9, 724.Google Scholar
Jambor, J.L. (1967b) New lead sulfantimonides from Madoc, Ontario. Part 2 – Mineral descriptions. The Canadian Mineralogist, 9, 191213.Google Scholar
Johan, Z., and Mantienne, J., (2000) Thallium-rich mineralization at Jas Roux, Hautes-Alpes, France: a complex epithermal, sediment-hosted, ore-forming system. Journal of the Czech Geological Society, 45, 6377.Google Scholar
Khodaparast, M., Tajedin, H., and Shahrokhi, V., (2010) Nature of fluid inclusions of gold mineralization at Barika shear zone: Example of Kuroko type gold mineralization in the west of Iran. The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University – Mashad Branch, Iran, 26-28 April 2010.Google Scholar
Kraus, W. and Nolze, G., (1999) PowderCell 2.3. Federal Institute for Materials Research and Testing, Berlin.Google Scholar
Le Bihan, M.T. (1962) Etude structurale de quelques sulfures de plomb et d’arsenic naturels du gisement de Binn. Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 99, 351360.Google Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschrift für Mineralogie, 63, 4589.Google Scholar
Makovicky, E., and Topa, D., (2012) Twinnite, Pb0.8Tl0.1Sb1.3As0.80S4, the OD character and the question of its polytypism. Zeitschrift für Kristallographie, 227, 468475.Google Scholar
Makovicky, E., and Topa, D., (2013) The crystal structure of barikaite. Mineralogical Magazine, in press.CrossRefGoogle Scholar
Makovicky, E., Topa, D., Tajjedin, H., Rastad, E., and Yaghubpur, A., (2012) The crystal structure of guettardite, PbAsSbS4. The Canadian Mineralogist, 50, 253265.CrossRefGoogle Scholar
Mantienne, J. (1974) La minéralisation metallifère de Jas-Roux (Hautes-Alpes). Thèse de Doctorat Universitaire, Université de Paris 6, 153 pp.Google Scholar
Marumo, F. and Nowacki, W., (1965) The crystal structure of rathi te- I. Zeitschrift für Kristallographie, 122, 433456.CrossRefGoogle Scholar
Marumo, F. and Nowacki, W., (1967) The crystal structure of dufrénoysite, Pb16As16S40. Zeitschrift für Kristallographie, 124, 409419.CrossRefGoogle Scholar
Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y. and Paar, W.H. (2012) Lead-antimony sulfosalts from Tuscany (Italy). XII. Boscardinite , TlPb3(Sb7As2)S9S18, a new mineral species from the Monte Arsiccio mine: occurrence and crystal structure. The Canadian Mineralogist, 50, 235251.CrossRefGoogle Scholar
Ozawa, T. and Nowacki, W., (1974) Note on the mineral rathite-IV. Neues Jahrbuch für Mineralogie Monatshefte, 1974, 530531.Google Scholar
Paar, W.H., Pring, A., Moëlo, Y., Stanley, C.J., Putz, H., Topa, D., Roberts, A.C. and Braithwaite, R.S.W. (2009) Daliranite, PbHgAs2S6, a new sulfosalt from the Zarshouran Au-As deposit, Takab region, Iran. Mineralogical Magazine, 73, 871881.CrossRefGoogle Scholar
Ribár, B., Nicca, Ch. and Nowacki, W., (1969) Dreidimensionale Verfeinerung der Kristallstruktur von Dufrénoysite, Pb8As8S20. Zeitschrift für Kristallographie, 130, 1540.CrossRefGoogle Scholar
Topa, D., Makovicky, E., Putz, H., Zagler, G., and Tajeddin, H., (2013a) Barikaite, IMA 2012-055. CNMMC Newletter No. 15, February 2013, page 4; Mineralogical Magazine, 77, 112.Google Scholar
Topa, D., Makovicky, E., Putz, H., Zagler, G., and Tajeddin, H., (2013b) Ferdowsiite, IMA 2012-062. CNMMC Newletter No. 15, February 2013, page 9; Mineralogical Magazine, 77, 112.Google Scholar
Topa, D., Makovicky, E., Putz, H., Zagler, G., and Tajeddin, H., (2013c) Arsenquatrandorite, IMA 2012- 087. CNMNC Newsletter No.16, August 2013, page 2696; Mineralogical Magazine, 77, 26952709.Google Scholar