Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T23:39:17.368Z Has data issue: false hasContentIssue false

Assimilation and metamorphism at a basalt-limestone contact, Tokatoka, New Zealand

Published online by Cambridge University Press:  05 July 2018

C. K. Baker*
Affiliation:
Department of Geology, University of Auckland, New Zealand
Philippa M. Black
Affiliation:
Department of Geology, University of Auckland, New Zealand
*
* Present address: Department of Geology, University of Newcastle, N.S.W. 2308, Australia

Summary

Small-scale assimilation of limestone during the intrusion of an olivine basalt feeder dyke into an Eocene argillaceous, siliceous biomicrite in the Tokatoka area has resulted in the incorporation of large amounts of calcium into the parent magma. Initial effects of assimilation have caused partial resorption of the early-formed igneous mineralogy and the precipitation of calcic, iron-rich clinopyroxenes (ferrosahlite to hedenbergite), wollastonite, schorlomite, and pyrrhotine. Pyroxene compositions show a trend of strong enrichment in Catschermak and ferrosilite components. Derivative hydrothermal solutions, rich in Ca, Si, Al and alkalis have precipitated and altered anhydrous phases to tobermorite, thomsonite, prehnite, pectolite, cebollite, hydrogrossular, gismondine, analcime, Sr- and Ba-bearing zeolites, and calcite.

Modelling of the basalt-limestone assimilation process by least-squares mixing methods has shown that the observed chemical variation can largely be accounted for by the dilution of the basalt with up to 30 wt. % decarbonated limestone. Desilication of the liquid, a result of this dilution effect, has been accommodated in the chemistry of the early-formed mineralogy rather than by the crystallization of minerals characteristic of an undersaturated rock type.

Contemporaneous with the intrusion of the basalt was the high-temperature contact metamorphism of the limestone. This produced assemblages of rankinite, kilchoanite, larnite, spurrite, grossular, and tobermorite. Subsequent injection of the basalt and hybrid phases into fractures has resulted in the alteration of the primary metamorphic assemblage to wollastonite, scawtite, foshagite, hydrogrossular, calcite, and vaterite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, (S. O.), 1950. Am. Mineral. 35, 1080.Google Scholar
Agrell, (S. O.) 1965. Mineral. Mag. 34, 1-15.Google Scholar
Albee, (A. L.) and Ray, (C.), 1970. Anal. Chem. 42, 1408-14.CrossRefGoogle Scholar
Bence, (A. E.) and Albee, (A. L.), 1968. J. Geol. 76, 382-403.CrossRefGoogle Scholar
Black, (P. M.), 1964. Igneous and Metamorphic rocks from Tokatoka, Northland. Unpubl. M.Sc. thesis, Univ. of Auckland.Google Scholar
Black, (P. M.) 1969. Mineral. Mag. 37, 517-19.CrossRefGoogle Scholar
Bowen, (N. L.), 1922. J. Geol. 30, 513-70.CrossRefGoogle Scholar
Gordon, (T. H.) and Greenwood, (H. J.), 1971. Am. Mineral. 56, 1674-88.Google Scholar
Hess, (H. H.), 1949. Am. Mineral. 34, 621-66.Google Scholar
Joesten, (R.), 1974. Am. J. Sci. 274, 876-901.CrossRefGoogle Scholar
Joesten, (R.) 1977. Geol. Soc. Am. Bull. 88, 1515-29.2.0.CO;2>CrossRefGoogle Scholar
Liou, (J. D.), 1971. Am. Mineral. 56, 507-31.Google Scholar
Mason, (B.), 1957. Am. Mineral. 42, 379-92.Google Scholar
Matsueda, (H.), 1974. Mineral. J. (Japan). 7, 327 43.CrossRefGoogle Scholar
Mitsueda, (T.), 1970. Ibid. 6, 143-58.Google Scholar
Nakamura, (Y.), 1973. Am. Mineral. 58, 986-90.Google Scholar
Norrish, (K.) and Hutton, (J. T.), 1969. Geochim. Cosmochim. Acta. 33, 431-53 .CrossRefGoogle Scholar
Roy, (D. M.), 1958. Am. Mineral. 43, 1009-28.Google Scholar
Rutstein, (M. S.), 1971. Am. Mineral. 56, 2040-52.Google Scholar
Sabine, (P. A.), 1975. Phil. Trans. Roy. Soc. Lond. 280, 225-69.Google Scholar
Schuiling, (R. D.), 1964. Nature. 204, 1054-5.CrossRefGoogle Scholar
Shand, (C. J.), 1930. Geol. Mag. 67, 415-27 .CrossRefGoogle Scholar
Speakman, (K.), Taylor, (H. F. W.), Bennet, (J. M.), and Gard, (J. A.), 1967. J. Chem. Soc. (A), 1052-60.CrossRefGoogle Scholar
Taylor, (H. F. W.), 1959. Mineral. Mag. 32, 1 10-16.Google Scholar
Tilley, (C. E.), 1947. Soc. Geol. Finlande Comptes Rendu. 20, 97-105.Google Scholar
Tilley, (C. E.) 1952. Am. J. Sci. Bowen Volume, 529-45 .Google Scholar
Tilley, (C. E.) and Harwood, (H. F.), 1931. Mineral. Mag. 22, 439-68.Google Scholar
Verhoogen, (J.), 1962. Am. J. Sci. 260, 211-20.CrossRefGoogle Scholar
Watkinson, (D. H.) and Wyllie, (P. J.), 1969. Geol. Soc. Am. Bull. 80, 1565-76.CrossRefGoogle Scholar
Wright, (T. L.) and Doherty, (P. C.), 1970. Ibid. 81, 1995-2008.Google Scholar
Wyllie, (P. J.), 1974. In The Alkaline Rocks (ed. Sorensen, H.). Wiley-Interscience.Google Scholar
Zharikov, (V. A.) and Schmulovich, (K. I.), 1969. Geokhimiya, 9, l039-56.Google Scholar