Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T00:24:15.513Z Has data issue: false hasContentIssue false

Aspidolite, the Na analogue of phlogopite, from Kasuga-mura, Gifu Prefecture, central Japan: description and structural data

Published online by Cambridge University Press:  05 July 2018

Y. Banno*
Affiliation:
Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
R. Miyawaki
Affiliation:
Department of Geology, The National Science Museum, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
T. Kogure
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
S. Matsubara
Affiliation:
Department of Geology, The National Science Museum, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
T. Kamiya
Affiliation:
Tsukaguchihon-machi, Amagasaki, Hyogo, 661-0001, Japan
S. Yamada
Affiliation:
92 Hoshino, Kiyomizu, Higashiyama, Kyoto, 605-0853, Japan
*

Abstract

Aspidolite, the Na analogue of phlogopite, ideally NaMg3AlSi3O10(OH)2, occurring in hornfels from a contact aureole in Kasuga-mura, central Japan, has been approved as a mica species by the Commission on New Minerals and Mineral Names of the International Mineralogical Association. Aspidolite is interleaved with and surrounded by phlogopite. Based on its mode of occurrence, phlogopite is classified into two types; (1) phlogopite interleaved with aspidolite (= interleaved phlogopite) and (2) phlogopite rim. The aspidolite-phlogopite assemblage is associated with amphibole (pargasite-magnesiosadanagaite), titanite, calcite, scapolite, apatite, pyrrhotite and chalcopyrite. A representative chemical formula of aspidolite is (Na0.90K0.10)∑1.00(Mg2.27Al0.41Fe0.232+Ti0.05)∑2.96 (Al1.44Si2.56)∑4.00O10(OH1.97F0.03)∑2.00. Aspidolite has almost fully occupied the interlayer site; its Na/(Na+K) ratio ranges from 0.67 to 0.95. It has more tetrahedral Al (1.38—1.48 a.p.f.u. for O = 11) than the ideal aspidolite end-member showing progression of tschermakite-type substitution. The alternation of aspidolite and phlogopite parallel to the (001) plane may indicate a miscibility gap between these two phases. The phlogopite rim is interpreted as a later product, probably formed metasomatically. Aspidolite is optically biaxial negative with elongation positive and Z ‖ cleavage. Two polytypes (1M and 1A) of aspidolite were identified in X-ray powder diffraction patterns. Aspidolite-1M is monoclinic, space group C2/m, with refined unit-cell parameters a = 5.291(8), b = 9.16(2), c = 10.12(2) Å, β = 105.1(1)°, V = 473(1) Å3, Z = 2. Aspidolite-1A is triclinic, space group C, with a = 5.289(6), b = 9.16(1), c = 9.892(9) Å, α = 94.45(9), β = 97.74(9), γ = 90.0(1)°, V = 473.4(9) Å3, Z = 2.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alietti, E., Brigatti, M.F. and Poppi, L. (1995) The crystal structure and chemistry of high-aluminium phlogopite. Mineralogical Magazine, 59, 149157.CrossRefGoogle Scholar
Arai, S., Matsukage, K., Isobe, E. and Vysotskiy, S. (1997) Concentration of incompatible elements in oceanic mantle: effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochimica et Cosmochimica Acta, 61, 671675.CrossRefGoogle Scholar
Augé, T. (1987) Chromite deposits in the northern Oman ophiolite: mineralogical constraints. Mineralium Deposita, 22, 110.CrossRefGoogle Scholar
Bailey, S.W. (1984) Crystal chemistry of the true micas. Pp. 1360 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Banno, Y., Miyawaki, R., Matsubara, S., Makino, K., Bunno, M., Yamada, S. and Kamiya, T. (2004) Magnesiosadanagaite, a new member of the amphibole group from Kasuga-mura, Gifu Prefecture, central Japan. European Journal of Mineralogy, 16, 177183.CrossRefGoogle Scholar
Bence, A.E. and Albee, A.L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382403.CrossRefGoogle Scholar
Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. Pp. 198 in: Micas: Crystal Chemistry and Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B. Jr, and Guggenheim, S., editors). Reviews in Mineralogy and Geochemistry, 46, Mineralogical Society of America, and the Geochemical Society, Washington, D.C.Google Scholar
Carman, J.H. (1974) Synthetic sodium phlogopite and its two hydrates: stabilities, properties, and mineralogic implications. American Mineralogist, 59, 261273.Google Scholar
Costa, F., Dungan, M.A. and Singer, B.S. (2001) Magmatic Na-rich phlogopite in a suite of gabbroic crustal xenoliths from Volcan San Pedro, Chilean Andes: Evidence for a solvus relation between phlogopite and aspidolite. American Mineralogist, 86, 2935.CrossRefGoogle Scholar
Franz, G. and Althaus, E. (1976) Experimental investigation on the formation of solid solutions in sodium-aluminum-magnesium micas. Neues Jahrbuch für Mineralogie Abhandlungen, 126, 233253.Google Scholar
Ganier, V., Ohnenstetter, D. and Giuliani, G. (2004) L'aspidolite fluorée: rêle des évaporates dans la genèse du rubis des marbres des Nangimali (Azad-Kashmir, Pakistan). Comptes Rendus Geoscience, 336, 12451253.CrossRefGoogle Scholar
Güven, N. (1971) The crystal structure of 2Mj phengite and 2Mi muscovite. Zeitschrift für Kristallographie, 134, 196212.Google Scholar
Hewitt, D.A. and Wones, D.R. (1975) Physical properties of some synthetic Fe-Mg-Al trioctahedral biotites. American Mineralogist, 60, 854862.Google Scholar
Kogure, T., Banno, Y. and Miyawaki, R. (2004) Interlayer structure in aspidolite, the Na analogue of phlogopite. European Journal of Mineralogy, 16, 891897.CrossRefGoogle Scholar
Lin, C.-Y. and Bailey, S.W. (1984) The crystal structure of paragonite-2M1 . American Mineralogist, 69, 122127.Google Scholar
[Liu, X.F. (1989) Signification pétrogénétique des micas trioctaédriques sodiques. Modélisation experimentale dans le système Na2O-K2O-MgO-Al2O3-SiO2-H2O-(TiO2-HF-D2O). Thèse de Doctorat; Université d'Orléans, 87pp.] cited in Costa, F., Dungan, M.A. and Singer, B.S. (2001) Magmatic Na-rich phlogopite in a suite of gabbroic crustal xenoliths from Volcán San Pedro, Chilean Andes: Evidence for a solvus relation between phlogopite and aspidolite. American Mineralogist, 86, 2935.Google Scholar
Lorand, J.P. and Cottin, J.Y. (1987) Na- Ti- Zr- H2O-rich mineral inclusions indicating postcumulus chrome-spinel dissolution and recrystallization in the Western Laouni mafic intrusion, Algeria. Contributions to Mineralogy and Petrology, 97, 251263.CrossRefGoogle Scholar
Matsuda, T. and Henmi, K. (1986) Syntheses of trioctahedral micas in the compositional join phlogopite-sodium phlogopite. Journal of the Mineralogical Society of Japan, special issue, 17, 187193 (in Japanese with English abstract).CrossRefGoogle Scholar
Matsumoto, I. and Arai, S. (1997) Characterization of chromian spinel as a tool of petrological exploration for podiform chromitite. Resource Geology, 47, 189199.Google Scholar
Nakamuta, Y. (1993) The determination of lattice parameters of a small crystal with a Gandolfi camera. Journal of the Mineralogical Society of Japan, 22, 113122.(in Japanese with English abstract).CrossRefGoogle Scholar
Nakamuta, Y. (1999) Precise analysis of a very small mineral by an X-ray diffraction method. Journal of the Mineralogical Society of Japan, 28, 117121.(in Japanese with English abstract).CrossRefGoogle Scholar
Peng, G., Lewis, J., Lipin, B., McGee, J., Bao, P. and Wang, X. (1995) Inclusions of phlogopite and phlogopite hydrates in chromite from the Hongguleleng ophiolite in Xinjiang, northwest China. American Mineralogist, 80, 13071316.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., D'yakonov, Yu.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval', P.V., Muller, G., Neiva, A.M.R., Radoslowich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905912.Google Scholar
Schiano, P., Clocchiatti, R., Lorand, J.P., Massare, D., Deloule, E. and Chaussidon, M. (1997) Primitive basaltic melts included on podiform chromites from the Oman Ophiolite. Earth and Planetary Science Letters, 146, 489497.CrossRefGoogle Scholar
Schreyer, W., Abraham, K. and Kulke, H. (1980) Natural sodium phlogopite coexisting with potas-sium phlogopite and sodian aluminian talc in a metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria. Contributions to Mineralogy and Petrology, 74, 223233.CrossRefGoogle Scholar
Suzuki, K. (1975) On some unusual bands and veins metasomatically developed in the contact aureole in Kasugamura, Gifu-ken. Journal of the Geological Society of Japan, 81, 487504.(in Japanese with English abstract).CrossRefGoogle Scholar
Suzuki, K. (1977) Local equilibrium during the contact metamorphism of siliceous dolomites in Kasuga-mura, Gifu-ken, Japan. Contributions to Mineralogy and Petrology, 61, 7989.CrossRefGoogle Scholar
Talkington, R.W., Watkinson, D.H., Whittaker, P.J. and Jones, P.C. (1986) Platinum group element-bearing minerals and other solid inclusions in chromite of mafic and ultramafic complexes: chemical compositions and comparisons. Pp. 223249 in: Metallogeny of Basic and Ultrabasic Rocks (Regional Presentations) (Carter, B., Chowdhury, M.K.R., Janković, S., Marakushev, A.A., Morten, L., Onikhimovsky, V.V., Raade, G., Rocci, G. and Augustithis, S.S., editors). Theophrastus, Athens, Greece.Google Scholar
Toraya, H. (1993) The determination of unit-cell parameters from Bragg reflection data using a standard reference material but without a calibration curve. Journal of Applied Crystallography, 26, 583590.CrossRefGoogle Scholar
Tsujimori, T., Saito, D., Ishiwatari, A., Miyashita, S. and Sokolov, S.D. (1998) Electron microprobe element image of zoned chromian spinel with hydrous mineral inclusions in a chromitite from Elistratova ophiolite, Far East Russia. Science Reports of the Kanazawa University, 43, 1 — 11.Google Scholar
von Kobell, F. (1869) Über den Aspidolith, ein Glied aus der Biotit- und Phlogopit-Gruppe. Sitzungsberichte der Königl. Bayerischen Akademie der Wissenschaften zu München, Jg. 1869, 1, 364366.Google Scholar