Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T17:55:38.247Z Has data issue: false hasContentIssue false

Argentotetrahedrite-(Zn), Ag6(Cu4Zn2)Sb4S13, a new member of the tetrahedrite group

Published online by Cambridge University Press:  07 March 2022

Jiří Sejkora*
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Praha 9, Czech Republic
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Martin Števko
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Praha 9, Czech Republic Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
Thomas Raber
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Edith-Stein-Str. 9, D-79110 Freiburg, Germany
Philippe Roth
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Swiss Seismological Service, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland
Luboš Vrtiška
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00, Praha 9, Czech Republic
*
*Author for correspondence: Jiří Sejkora, Email: [email protected]

Abstract

Argentotetrahedrite-(Zn), Ag6(Cu4Zn2)Sb4S13, has been approved as a new mineral species by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA-CNMNC) using samples from Kremnica, Slovak Republic (hereafter KR), and Lengenbach, Switzerland (LE). Additionally, it was also identified at the small deposit of Zvěstov (Stříbrnice), Czech Republic (ZV). At the Slovak locality, it occurs as anhedral grains up to 0.1 mm in size, steel-grey in colour, with a metallic lustre, in association with ‘argentotennantite-(Fe)’ and tiny chalcopyrite grains in quartz gangue. At Lengenbach, it was found as domains of tristetrahedral crystal of tetrahedrite-(Zn), up to 1 mm in size, associated with dolomite. At Zvěstov, it occurs as irregular aggregates, up to 0.2 mm in size, partly rimmed by kenoargentotetrahedrite-(Fe). Argentotetrahedrite-(Zn) is isotropic, grey in colour, with blue-greenish tints. Reflectance data for COM wavelengths in air (KR sample) are [λ (nm), R (%)]: 470, 30.1; 546, 29.8; 589, 29.8; and 650, 28.3. Chemical formulae of the samples studied, recalculated on the basis of ΣMe = 16 apfu (atoms per formula unit), are: (Ag3.27Cu2.69)Σ5.96[Cu4.00(Zn1.69Fe0.23Cu0.05Cd0.02Hg0.01)Σ2.00](Sb3.86As0.17)Σ4.03S12.73 (KR), (Ag3.17Cu2.79)Σ5.96[Cu4.00(Zn1.55Cd0.23Fe0.16Cu0.05Hg0.01)Σ2.00](Sb3.71As0.32)Σ4.03S12.77 (LE) and (Ag3.27Cu2.67)Σ5.94[Cu4.00(Zn1.39Fe0.50Cu0.07Cd0.03Hg0.01)Σ2.00](Sb4.03As0.04)Σ4.07S13.08 (ZV). Argentotetrahedrite-(Zn) is cubic, I$\overline 4$3m, with a = 10.5505(10) Å, V = 1174.4(3) Å3 and Z = 2 (KR); a = 10.5155(13) Å and V = 1162.8(4) Å3 (LE); and a = 10.5663(12) Å and V = 1179.7 Å3 (ZV). The crystal structure of argentotetrahedrite-(Zn) has been refined by single-crystal X-ray diffraction data to a final R1 = 0.035 on the basis of 327 unique reflections with Fo > 4σ(Fo) and 22 refined parameters (sample KR). Argentotetrahedrite-(Zn) is isotypic with other members of the tetrahedrite group. The structural relationship between argentotetrahedrite-(Zn) and other members of the freibergite series are discussed and previous findings of this species are briefly reviewed.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Terence Graham

References

Biagioni, C., George, L.G., Cook, N.J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley, C.J., Welch, M.D. and Bosi, F. (2020a) The tetrahedrite group: Nomenclature and classification. American Mineralogist, 105, 109122.10.2138/am-2020-7128CrossRefGoogle Scholar
Biagioni, C., Sejkora, J., Moëlo, Y., Makovicky, E., Pasero, M. and Dolníček, Z. (2020b) Kenoargentotennantite-(Fe), IMA 2020-062. In: CNMNC Newsletter 58. Mineralogical Magazine, 84, 971975.Google Scholar
Böhmer, M. (1966) Geology and mineral associations of gold-bearing veins in the central part of the Kremnica ore field. Acta Geologica et Geographica Universitatis Comenianae, Geologica, 11, 5123 [in Slovak].Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.10.1107/S0108768190011041CrossRefGoogle Scholar
Bruker AXS Inc. (2016) APEX 3. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
Filimonov, S.V. and Spiridonov, E.M. (2005) Fahlores from the Kvartsitovye Gorki hypabyssal gold antimonite deposit (north of central Kazakhstan). New Data on Minerals, 40, 96104.Google Scholar
Flack, H.D. (1983) On enantiomorph-polarity estimation. Acta Crystallographica, A39, 876881.10.1107/S0108767383001762CrossRefGoogle Scholar
Graeser, S., Cannon, R., Drechsler, E., Raber, T. and Roth, P. (2008) Faszination Lengenbach Abbau-Forschung-Mineralien 1958–2008. Kristallographik Verlag, Achberg, Germany [in German].Google Scholar
Ixer, R.A. and Stanley, C.J. (1983) Silver mineralization at Sark's Hope mine, Sark, Channel Islands. Mineralogical Magazine, 47, 539545.10.1180/minmag.1983.047.345.15CrossRefGoogle Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1986) Compositional trends in tetrahedrite. The Canadian Mineralogist, 24, 385397.Google Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1988) Crystal chemistry of tetrahedrite. American Mineralogist, 73, 389397.Google Scholar
Kenngott, G.A. (1853) Das Mohs'sche Mineralsystem, dem gegenwärtigen Standpuncte der Wissenschaft gemäss bearbeitet. Gerold Verlag, Wien.Google Scholar
Koděra, P., Šucha, V., Lexa, J. and Fallick, A.E. (2007) The Kremnica Au-Ag epithermal deposit: an example of laterally outflowing hydrothermal system? Pp. 173176 in: Digging Deeper (Andrew, et al. , editors). Proceedings of IX SGA Conference, Irish Association for Economic Geology.Google Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.10.1107/S0021889895014920CrossRefGoogle Scholar
Kraus, I., Chernishev, I.V., Šucha, V., Kovalenker, V.A., Lebedev, V.A. and Šamajová, E. (1999) Use of illite for K/Ar dating of hydrothermal precious and base metal mineralization in Central Slovak Neogene volcanic rocks. Geologica Carpathica, 50, 353364.Google Scholar
Lexa, J., and Bartalský, B. (1999) Low-sulfidation epithermal gold at Kremnica. Pp. 265273 in: Epithermal mineralization of the Western Carphatians (Molnár, F., Lexa, J. and Hedenquist, J.W., editors). Society of Economic Geologists, Guidebook Series, 31. Littleton, Colordao, USA.Google Scholar
Lexa, J., Halouzka, R., Havrila, M., Hanzel, L., Kubeš, P., Liščák, P. and Hojstričová, V. (1998) Explanatory notes to the geological map of the Kremnické vrchy mountain range. D. Štúr Institute of Geology, Bratislava, 1308.Google Scholar
Li, X. and Wang, G. (1990) Studies of the tetrahedrite-group minerals from Dachang ore field, Guangxi, China. Acta Mineralogica Sinica, 10, 119126 [in Chinese].Google Scholar
Lynch, J.G. (1989) Large-scale hydrothermal zoning reflected in the tetrahedrite-freibergite solid solution, Keno Hill Ag-Pb-Zn district, Yukon. The Canadian Mineralogist, 27, 383400.Google Scholar
Nouza, R. (1988) Prognostic Evaluation of Ag-Pb-Zn Mineralization of the Blanice Graben. Unpublished Dissertation Thesis, Faculty of Science, Charles University Prague, 143 pp. [in Czech].Google Scholar
Pattrick, R.A.D. and Hall, A.J. (1983) Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites. Mineralogical Magazine, 47, 441451.10.1180/minmag.1983.047.345.05CrossRefGoogle Scholar
Peterson, R.C. and Miller, I. (1986) Crystal structure and cation distribution in freibergite and tetrahedrite. Mineralogical Magazine, 50, 717721.10.1180/minmag.1986.050.358.19CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco.Google Scholar
Qu, K., Sima, X., Gu, X., Sun, W., Fan, G., Hou, Z., Ni, P., Wang, D., Yang, Z. and Wang, Y. (2021) Kenoargentotetrahedrite-(Zn), IMA 2020-075. CNMNC Newsletter 59; Mineralogical Magazine, 85, 278281, https://doi.org/10.1180/mgm.2021.5Google Scholar
Riley, J.F. (1974) The tetrahedrite–freibergite series, with reference to the Mount Isa Pb–Zn–Ag orebody. Mineralium Deposita, 9, 117124.10.1007/BF00207969CrossRefGoogle Scholar
Roth, P., Raber, T., Drechsler, E. and Cannon, R. (2014) The Lengenbach quarry, Binn Valley, Switzerland. The Mineralogical Record, 45, 157196.Google Scholar
Rozhdestvenskaya, I.V., Zayakina, N.V. and Samusikov, V.P. (1989) Crystal structure studies in the tetrahedrite-freibergite series. 12th European Crystallographic Meeting, Moscow, USSR, August 2029. Collected abstracts, vol. 2, 145.Google Scholar
Rozhdestvenskaya, I.V., Zayakina, N.V. and Samusikov, V.P. (1993) Crystal structure features of minerals from a series of tetrahedrite-freibergite. Mineralogiceskij Zhurnal, 15, 917 [in Russian].Google Scholar
Sejkora, J., Biagioni, C., Števko, M., Raber, T. and Roth, P. (2021a) Argentotetrahedrite-(Zn). IMA 2020-069. CNMNC Newsletter 59. Mineralogical Magazine, 84, 278281, https://doi.org/10.1180/mgm.2021.5Google Scholar
Sejkora, J., Biagioni, C., Vrtiška, L. and Moëlo, Y. (2021b) Zvěstovite-(Zn), Ag6(Ag4Zn2)As4S13, a new tetrahedrite-group mineral from Zvěstov, Czech Republic. Mineralogical Magazine, 85, 716724.10.1180/mgm.2021.57CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Spiridonov, E.M., Sokolova, N.G., Gapeev, A.K., Dashevskaya, D.M., Evstigneeva, T.L., Chvileva, T.N., Demidov, V.G., Balashov, E.P. and Shulga, V.I. (1986) A new mineral – argentotennantite. Doklady Akademii Nauk SSSR, 290, 206210 [in Russian].Google Scholar
Števko, M., Sejkora, J., Dolníček, Z. and Škácha, P. (2018) Selenium-rich Ag-Au mineralization at the Kremnica Au-Ag epithermal deposit, Slovak Republic. Minerals, 8, 572.10.3390/min8120572CrossRefGoogle Scholar
Velebil, D. (2004) The occurrence of base-metal ores at Zvěstov, SW of Vlašim. Sborník semináře Stříbrná Jihlava 2004, 160162 [in Czech].Google Scholar
Velebil, D., Macek, I. and Soumar, J. (2016) A contribution to knowledge of chemistry of tetrahedrites from the Czech localities: Příbram, Obecnice, Zvěstov, Mníšek pod Brdy, Ratibořské Hory, Stará Vožice, Jáchymov, Kutná Hora and Stříbrná Skalice. Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 24, 132143 [in Czech].Google Scholar
Velebil, D., Hyršl, J., Sejkora, J. and Dolníček, Z. (2021) Chemistry and classification of minerals of tetrahedrite group from deposits of Peru. Bulletin Mineralogie Petrologie 29, 321336 [in Czech].10.46861/bmp.29.321CrossRefGoogle Scholar
Vlasáč, J., Chovan, M., Vojtko, R., Žitňan, P. and Mikuš, T. (2021) Mineralogy of the Au-Ag mineralization from the Finsterort and Anton vein system, Štiavnické vrchy Mts. (Slovakia). Bulletin Mineralogie Petrologie 29, 255269.10.46861/bmp.29.255CrossRefGoogle Scholar
Wang, M., Zhang, X., Guo, X., Pi, D. and Yang, M. (2018) Silver–bearing minerals in the Xinhua hydrothermal vein-type Pb-Zn deposit, South China. Mineralogy and Petrology, 112, 85103.10.1007/s00710-017-0508-0CrossRefGoogle Scholar
Weissenbach, C.G.A. von (1831) Ueber die Gehalte der beym sächsischen Bergbau vorkommenden Silbererze. Kalender für den Sächsischen Berg- und Hüttenmann auf das Jahr 1831, 223248.Google Scholar
Welch, M.D., Stanley, C.J., Spratt, J. and Mills, S.J. (2018) Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+, Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group. European Journal of Mineralogy, 30, 11631172.10.1127/ejm/2018/0030-2773CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Wu, P., Gu, X., Qu, K., Yang, H. and Wang, Y. (2021) Argentotetrahedrite-(Hg), IMA 2020-079. In: CNMNC Newsletter 59. Mineralogical Magazine, 85, 278281.Google Scholar
Wuensch, B.J. (1964) The crystal structure of tetrahedrite, Cu12Sb4S13. Zeitschrift für Kristallographie, 119, 437453.10.1524/zkri.1964.119.5-6.437CrossRefGoogle Scholar
Zachariáš, J. and Hübst, T. (2012) Structural evolution of the Roudný gold deposit, Bohemian Massif: a combination of paleostress analysis and review of historical documents. Journal of Geosciences, 57, 87103.10.3190/jgeosci.117CrossRefGoogle Scholar
Zakrzewski, M.A. (1989) Members of the freibergite–argentotennantite series and associated minerals from Silvermines, County Tipperary, Ireland. Mineralogical Magazine, 53, 293298.10.1180/minmag.1989.053.371.03CrossRefGoogle Scholar
Supplementary material: File

Sejkora et al. supplementary material

Sejkora et al. supplementary material

Download Sejkora et al. supplementary material(File)
File 803.4 KB