Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T05:50:07.017Z Has data issue: false hasContentIssue false

An XRD, SEM and TG study of a uranopilite from Australia

Published online by Cambridge University Press:  05 July 2018

R.L. Frost*
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
M.L. Weier
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
G.A. Ayoko
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
W. Martens
Affiliation:
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
J. Čejka
Affiliation:
National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic
*

Abstract

A uranopilite from The South Alligator River, Northern Territory, Australia, has been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) with EDAX attachment, and thermogravimetry in conjunction with evolved gas mass spectrometry. The XRD shows that the mineral is a pure uranopilite with few if any impurities. The SEM images show that the uranopilite consists of elongated crystals, up to 50μm long and 5 μm wide. Thermogravimetry combined with mass spectrometry shows that dehydration occurs at ∼31°C resulting in the formation of metauranopilite. The first dehydration step over 20–71°C corresponds to a decrease of 5.4 wt.%, equivalent to 6.076 H2O. The second dehydration step, over the temperature range 71 –162.4°C corresponds to a decrease of 4.7 wt.%, equivalent to 5.288 H2O, making a total of 11.364 moles of H2O, close to 12 H2O for uranopilite.

Dehydroxylation takes place over the temperature range 80–160°C. The loss of sulphate occurs at higher temperatures in two steps at 622 and 636°C. A mass loss also occurs at 755°C, accounted for by evolved oxygen.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambartsumyan, T.L. (1957) Thermal studies of some uranium minerals. Atomnaya Energii, Voprosy Geologii Urana, Supplement, 86–125.Google Scholar
Ambartsumyan, T.L. and co-authors (1961) Termicheskie issledovaniya wanovykh i uransoderz-hashchikh mineralov (thermal studies of the uranium-containing minerals). 146 pp.Google Scholar
Anderson, A., Chieh, C, Irish, D.E. and Tong, J.P.K. (1980) An X-ray crystallographic, Raman, and infrared spectral study of crystalline potassium uranyl carbonate, K4UO2(CO3)3 . Canadian Journal of Chemistry, 58, 16511658.CrossRefGoogle Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy, vol. V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, Arizona.Google Scholar
Brugger, J., Burns, P.C. and Meisser, N. (2003) Contribution to the mineralogy of acid drainage of uranium minerals: Marecottite and the zippeite-group. American Mineralogist, 88, 676685.CrossRefGoogle Scholar
Burns, P.C. (2001) A new uranyl sulfate chain in the structure of uranopilite. The Canadian Mineralogist, 39, 11391146.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: Polyhedral geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Burns, P.C., Deely, K.M. and Hayden, L.A. (2003) The crystal chemistry of the zippeite group. The Canadian Mineralogist, 41, 687706.CrossRefGoogle Scholar
Čejka, J. and Urbanec, Z. (1979a) Thermal analysis of natural uranium sulfates. Zb. Celotátnej konferencie Termal Analisis, 8th, 177-180.Google Scholar
Čejka, J. and Urbanec, Z. (1979b) Use of thermal analysis for determining uranium secondary minerals in collections at the national museum in Prague. Casopis Narodniho Muzea v Praze, Rada Prirodovedna, 146, 114125.Google Scholar
Čejka, J., Tobola, K. and Urbanec, Z. (1976) Thermal analysis of some uranium minerals and related synthetic compounds. Proceedings of the 1st European Symposium on Thermal Analysis, 353-354.Google Scholar
Čejka, J., Mrazek, Z., Urbanec, Z. and Vasickova, S. (1982) High-temperature X-ray, thermal and infrared spectrum analyses of johannite and its deutero analog. Thermal Analysis, Proceedings of the 7th International Conference, 1, 713718.Google Scholar
Čejka, J., Urbanec, Z., Čejka, J. Jr., and Mrazek, Z. (1988) Contribution to the thermal analysis and crystal chemistry of johannite Cu[(UO2)2(SO4)2(OH)2].8H2O. Neues Jahrbuch für Mineralogie, Abhandlungen, 159, 297309.Google Scholar
Čejka, J., Sejkora, J., Mrazek, Z., Urbanec, Z. and Jarchovsky, T. (1996) Jachymovite, (UO2)8(SO4)(OH)14.13H2O, a new uranyl mineral from Jachymov, the Krusne Hory Mts., Czech Republic, and its comparison with uranopilite. Neues Jahrbuch für Mineralogie, Abhandlungen, 170, 155170.Google Scholar
Deliens, M. and Piret, P. (1993) Rabejacite, Ca(UO2)4(SO4)2(OH)6.6H2O, a new uranyl sulfate of calcium from the Lodevois ore deposit, Herault, France. European Journal of Mineralogy, 5, 873877.CrossRefGoogle Scholar
Donnay, J.D.H. (1955) The primitive cell of johannite. American Mineralogist, 40, 11311132.Google Scholar
Finch, R. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91179 in: Uranium: Mineralogy, Geochemistry and the Environment. Reviews in Mineralogy, 38,Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Finch, R.J., Cooper, M.A., Hawthorne, F.C. and Ewing, R.C. (1996) The crystal structure of schoepite, [(UO2)8O2(OH)12](H2O)12 . The Canadian Mineralogist, 34, 10711088.Google Scholar
Frondel, C. (1952) Uranium minerals. X. Uranopilite. American Mineralogist, 37, 950959.Google Scholar
Frondel, C. (1958) Systematic mineralogy of uranium and thorium. US Geological Survey Bulletin, No. 1064, 400 pp.Google Scholar
Frondel, C. and Weeks, A.D. (1958) Recent progress in the descriptive mineralogy of uranium. Proceedings of the 2nd UN International Conference on Peaceful Uses Atomic Energy, Geneva, 2, 277285.Google Scholar
Frost, R.L., Carmody, O., Erickson, K.L., Weier, M.L., Henry, D.O. and Čejka, J. (2004a) Molecular structure of the uranyl mineral uranopilite - a Raman spectroscopic study. Journal of Molecular Structure, 733, 203210.CrossRefGoogle Scholar
Frost, R.L., Henry, D.A. and Erickson, K. (20046) Raman spectroscopic detection of wyartite in the presence of rabejacite. Journal of Raman Spectroscopy, 35, 255260.CrossRefGoogle Scholar
Halasyamani, P.S., Francis, R.J., Walker, S.M. and O'Hare, D. (1999) New layered uranium(VI) molybdates: Syntheses and structures of (NH3(CH2)3NH3)(H3O)2(UO2)3(MoO4)5, C(NH2)3 (UO2)(OH)(MoO4), (C4H12N2)(UO2)(MoO4) 2, and (C5H14N2)(UO2)(MoO4)2.CH2O. Inorganic Chemistry, 38, 271279.CrossRefGoogle Scholar
Jensen, K.A. (1998) Petrography and chemistry of the uraninites and uraninite alteration phases from the uranium ore-deposit at Bangomé. Nuclear Science and Technology, EUR 18314 EN, 139159.Google Scholar
Jensen, K.A., Ewing, R.C. and Gauthier-Lafaye, F. (1997) Uraninite: A 2 Ga spent nuclear fuel from the natural fission reactor at Bangombe in Gabon, West Africa. Materials Research Society Symposium Proceedings, 465, 12091218.CrossRefGoogle Scholar
Jensen, K.A., Janeczek, J., Ewing, R.C., Stille, P., Gauthier-Lafaye, F. and Salah, S. (2000) Crandallites and coffinite: Retardation of nuclear reaction products at the Bangombe natural fission reactor. Materials Research Society Symposium Proceedings, 608, 525532.CrossRefGoogle Scholar
Jensen, K.A., Palenik, C.S. and Ewing, R.C. (2002) U6+ phases in the weathering zone of the Bangombe U-deposit: Observed and predicted mineralogy. Radiochimica Acta, 90, 761769.CrossRefGoogle Scholar
Larsen, E.S. and Berman, H. (1926) The identity of gilpinite and johannite. American Mineralogist, 11, 15.Google Scholar
Larsen, E.S. and Brown, G.V. (1917) Gilpinite, a new uranium mineral from Colorado. American Mineralogist, 2, 7579.Google Scholar
Meisser, N. (2003) La minéralogie de I'uranium dans le massif des Aiguilles Rouges (Alpes occidentales). PhD thesis, Faculty of Sciences, Lausanne University, Switzerland.Google Scholar
Meisser, N., Brugger, J. and Lahaye, Y. (2000) Mineralogy and acid-mine drainage of la Creusaz uranium prospect, Switzerland. Pp. 147–50 in: Uranium Deposits (Kribek, B. and Zeman, J., editors). Czech Geological Survey, Prague.Google Scholar
Mereiter, K. (1982) The crystal structure of johannite, Cu(UO2)2(OH)2(SO4)2.8H2O. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 4757.CrossRefGoogle Scholar
Mereiter, K. (1986) Neue kristallographische daten ueber das uranmineral andersonit. Anzeiger der oesterreichischen akademie der wissenschaften. Mathematisch-Naturwissenschaftliche Klasse, 3, 3941.Google Scholar
Miller, M.L., Finch, R.J., Burns, P.C. and Ewing, R.C. (1996) Description and classification of uranium oxide hydrate sheet anion topologies. Journal of Materials Research, 11, 30483056.CrossRefGoogle Scholar
Novácek, R. (1935) Some secondary uranium minerals. Vestnik Kralovské Ceské Spolecnosti Nauk, Cl. 2, 36 pp.Google Scholar
Novácek, R. (1941) The chemical formula of uranopilite and β-uranopilite. Vestnik Královské Ceské Spolecnosti Nauk, 13 pp.Google Scholar
Omori, K., and Kerr, P.F. (1963) Infrared studies of saline sulfate minerals. Geological Society of America Bulletin, 74, 709–34.CrossRefGoogle Scholar
Ondrus, P., Veselovsky, F. and Hlousek, J. (1997a) A review of mineral associations and paragenetic groups of secondary minerals of the Jachymov (Joachimsthal) ore district, Czech Republic. Journal of the Czech Geological Society, 42, 109114.Google Scholar
Ondrus, P., Veselovsky, F., Skala, R., Cisarova, I., Hlousek, J., Fryda, J., Vavrin, I., Čejka, J. and Gabasova, A. (19976) New naturally occurring phases of secondary origin from Jachymov (Joachimsthal), Czech republic. Journal of the Czech Geological Society, 42, 77108.Google Scholar
Ondrus, P., Skala, R., Veselovsky, F., Sejkora, J. and Vitti, C. (2003) Cejkaite, the triclinic polymorph of Na4(UO2)(CO3)3 – a new mineral from Jachymov, Czech republic. American Mineralogist, 88, 686693.CrossRefGoogle Scholar
Peacock, M.A. (1935) Johannite from Joachimsthal and Colorado. Zeitschrift fur Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 90, 112119.Google Scholar
Sejkora, J., Čejka, J. and Ondrus, P. (2000) New data of rabejacite (Jachymov, the Krusne Hory Mts., Czech Republic). Neues Jahrbuch für Mineralogie, Monatshefte, 289-301.Google Scholar
Serezhkin, V.N. (1981) Crystal chemistry relations of the uranyl compounds with trident-bridged anions AO4. Geokhimiya, 1677-1687.Google Scholar
Threadgold, I.M. (1960) The mineral composition of some uranium ores from the south Alligator River area, northern territory. Australian, CSIRO, Mineragraphic Investigation Technology Paper, No. 2, 53 pp.Google Scholar
Traill, R.J. (1952) Synthesis and X-ray study of uranium sulfate minerals. American Mineralogist, 37, 394406.Google Scholar
Urbanec, Z. and Cejka, J. (1980) Thermal and infrared spectrum analyses of uranopilite. Thermal Analysis, Proceedings of the 6th International Conference on Thermal Analysis, 2, 359364.Google Scholar
Urbanec, Z., Mrazek, Z. and Cejka, J. (1985) Thermal, X-ray and infrared absorption spectrum analyses of a new uranyl sulfate mineral. Thermochimica Acta, 86, 383386.CrossRefGoogle Scholar
Vochten, R., Blaton, N. and Peeters, O. (1997) Deliensite, Fe(UO2)+(SO4)2(OH)2.3H2O, a new ferrous uranyl sulfate hydroxyl hydrate from Mas d'Alary, Lodeve, Herault, France. The Canadian Mineralogist, 35, 10211025.Google Scholar
Vochten, R., Van Haverbeke, L., Van Springel, K., Blaton, N. and Peeters, O.M. (1995) The structure and physicochemical characteristics of synthetic zippeite. The Canadian Mineralogist, 33, 10911101.Google Scholar