Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T12:26:42.713Z Has data issue: false hasContentIssue false

An experimental study of tremolite dissolution rates as a function of pH and temperature: Implications for tremolite toxicity and its use in carbon storage

Published online by Cambridge University Press:  05 July 2018

Tamara Diedrich
Affiliation:
GET-Université de Toulouse-CNRS-IRD-OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France
Jacques Schott
Affiliation:
GET-Université de Toulouse-CNRS-IRD-OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France
Eric H. Oelkers*
Affiliation:
GET-Université de Toulouse-CNRS-IRD-OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Steady-state tremolite dissolution rates, at far-from-equilibrium conditions, were measured as a function of aqueous silica and magnesium activity, pH from 1.9 to 6.7, and temperature from 25 to 150ºC. Calcium is released from tremolite faster than either Mg or Si throughout most of the experiments even after these latter elements attained steady-state release rates. The preferential removal of Ca releases fine Mg-Si rich needle-like fibres from the tremolite, probably promoting its toxicity. In contrast, Mg was released in stoichiometric or near to stoichiometric proportion to Si once steady-state was attained. Measured steady-state tremolite dissolution rates based on Si release can be described using

where r+ signifies the BET surface area-normalized forward tremolite steady-state dissolution rate, AA refers to a pre-exponential factor = 6610–3 mol cm–2 s–1, EA designates an activation energy equal to 80 kJ mol–1, R represents the gas constant, T denotes absolute temperature, and ai refers to the activity of the subscripted aqueous species. This rate expression is consistent with tremolite dissolution rates at acidic pH being controlled by the detachment of partially liberated silica tetrahedra formed from the exchange of Mg2+ for two protons near the mineral surface after the near-surface Ca has been removed. Nevertheless, Mg release rates from tremolite are ~3 orders of magnitude slower than those from forsterite and enstatite suggesting that tremolite carbonation will be far less efficient than the carbonation of these other Mg-silicate minerals.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
© [2014] The Mineralogical Society of Great Britain and Ireland. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Footnotes

§

Present address: Barr Consulting, Duluth MN, USA

References

Aagaard, P. and Helgeson, H.C. (1977) Thermodynamic and kinetic constraints on the dissolution of feldspars. Geological Society of America Abstracts with Program, 9, 873.Google Scholar
Aagaard, P. and Helgeson, H.C. (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: I. Theoretical considerations. American Journal of Science, 282, 237285.CrossRefGoogle Scholar
Addison, J. and McConnell, E.E. (2008) A review of carcinogenicity studies of asbestos and non-abestos tremolite and other amphiboles. Regulatory Toxicology and Pharmacology, 52, S187S199.CrossRefGoogle ScholarPubMed
Arrhenius, S. (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohzucker durch Säuren. Zeitschrift für physikalische Chemie, 4, 226248.CrossRefGoogle Scholar
Berner, R.A. and Schott, J. (1982) Mechanism of pyroxene and amphibole weathering. 2. Observations of soil grains. American Journal of Science, 282, 12141231.CrossRefGoogle Scholar
Bozhilov, K.N. and Jenkins, D.M. (2007) Analytical electron microscopy of tremolite. Pp. 616625 in: Modern Research and Educational Topics in Microscopy, vol. 2 (A. Mendez-Vilas and J. Dias, editors). Formatex.Google Scholar
Brantley, S.L. and Chen, Y. (1995) Chemical weathering rates of pyroxenes and amphiboles. Pp. 119172 in: Chemical Weathering Rates of Silica Minerals (A.F. White and S.L. Brantley, e.i.ors). Reviews in Mineralogy, 31, Mineralogical Society of America, Washington, D.C.Google Scholar
Case, B.W. (1991) Health effects of tremolite. Pp. 491–504 in: The Third Wave of Asbestos Disease: Exposure to Asbestos in Place (P.J. Landrigan and H. Kazemi, editors). Annals of the New York Academy of Sciences, 643.Google Scholar
Chaïrat, C., Schott, J., Oelkers, E.H., Lartigue J.-E. and Harouiya, N. (2007) Kinetics and mechanism of natural fluorapatite dissolution at 25ºC and pH from 3 to 12. Geochimica et Cosmochimica Acta, 71, 59015912.CrossRefGoogle Scholar
Chen, Y. and Brantley, S.L. (1998) Diopside and anthopyllite dissolution at 25ºC and 90ºC and acid pH. Chemical Geology, 147, 23248.CrossRefGoogle Scholar
Churg, A. (1988) Chrysotile, tremolite, and malignant mesothelioma in man.. Chest, 93, 621628.CrossRefGoogle ScholarPubMed
Daval, D., Hellmann, R., Crovisier, J., Tisserand, D., Martinez, I. and Guyot, F. (2011a) Dissolution kinetics of diopside as a function of solution saturation state: Macroscopic measurements and implication for modeling of geologic storage of CO2 . Geochimica et Cosmochimica Acta, 74, 2615–263.CrossRefGoogle Scholar
Daval, D., Sissmann, O., Menguy, N., Saldi, G.D., Guyot, F., Martinez, I., Crovixier, J., Garcia, B., Machouk, I., Knauss, K. and Hellmann, R. (2011b) Influence of amorphous silica layer formation on the dissolution rate of olivine at 90ºC and elevated pCO2 . Chemical Geology, 284, 193209.CrossRefGoogle Scholar
Daval, D., Hellmann, R., Saldi, G.D., Wirth, R. and Knauss, K. (2013) Linking mm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside. Geochimica et Cosmochimica Acta, 107, 121134.CrossRefGoogle Scholar
Davis, J.A. and Kent, D.B. (1990) Surface complexation in aqueous solutions. Pp. 177260 in: Mineral–Water Interface Geochemistry (M.F. Hochella and A.F. White, editors). Reviews in Mineralogy, 23, Mineralogical Society of America, Washington, D.C.Google Scholar
Davis, J.M.G., Addison, J., McIntosh, C., Miller, B.G. and Niven, K. (1991) Variations in the carcinogenicity of tremolite dust samples of differing morphology. Pp. 473490 in: The Third Wave of Asbestos Disease: Exposure to Asbestos in Place (P.J. Landrigan and H. Kazemi, editors). Annals of the New York Academy of Sciences, 643.CrossRefGoogle Scholar
Dixit, S. and Carrroll, S.A. (2007) Effect of solution saturation state and temperature on diopside dissolution. Geochemical Transactions, 8, 3.CrossRefGoogle ScholarPubMed
Fischer, C., Kurganskaya, I., Schaefer, I., Schafer, T. and Luttge, A. (2014) Variability of crystal surface reactivity: What do we know? Applied Geochemistry, 43, 132157.Google Scholar
Gautier, J.-M., Oelkers, E.H. and Schott, J. (2001) Are quartz dissolution rates proportional to BET surface areas? Geochimica et Cosmochimica Acta, 65, 10591070.Google Scholar
Gislason, S.R. and Oelkers, E.H. (2014) Carbon storage in basalt. Science, 344, 373374.CrossRefGoogle ScholarPubMed
Golubev, S.V. and Pokrovsky, O.S. (2006) Experimental study of the effect of organic ligands on diopside dissolution kinetics. Geochimica et Cosmochimica Acta, 235, 377389.Google Scholar
Golubev, S.V., Pokrovsky, O.S. and Schott, J. (2005) Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25ºC. Chemical Geology, 217, 227238.CrossRefGoogle Scholar
Gunter, M.E., Belluso, E. and Mottana, A. (2007) Amphiboles: Environmental and health concerns. Pp. 453516 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia, USA and the Geochemical Society, St. Louis, Missouri, USA.CrossRefGoogle Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia, USA and the Geochemical Society, St. Louis, Missouri, USA.CrossRefGoogle Scholar
Hänchen, M., Prigobbe, V., Baciocchi, R. and Mazzotti, M. (2008) Precipitation in the Mg-carbonate system – effects of temperature and CO2 pressure. Chemical Engineering Science, 63, 10121028.CrossRefGoogle Scholar
Johnson, J.W., Anderson, G. and Parkhurst, D. (2000) Database from ‘thermo.com.V8.R6.230’ prepared at Lawrence Livermore National Laboratory,(Revision: 1.11), California, USA.Google Scholar
Jurinski, J.B. and Rimstidt, J.D. (2001) Biodurability of talc. American Mineralogist, 86, 392399.CrossRefGoogle Scholar
King, H.E., Plumper, O. and Putnis, A. (2010) Effect of secondary phase formation on the carbonation of olivine. Environmental Science & Technology, 44, 65036509.CrossRefGoogle ScholarPubMed
King, H.E., Satoh, H., Tsukamoto, K. and Putnis, A. (2014) Specific surface measurements of olivine dissolution by phase shift interferometry. American Mineralogist, 99, 377386.CrossRefGoogle Scholar
Knauss, K.G., Nguyen, S.N. and Weed, H.C. (1993) Diopside dissolution kinetics as a function of pH CO2, temperature and time. Geochimica et Cosmochimica Acta, 57, 285294.CrossRefGoogle Scholar
Koroleff, F. (1976) Determination of silicon. Pp. 149158 in: Methods of Seawater Analysis (K. Grasshoff, editor). Springer Verlag, New York. Google Scholar
Lasaga, A.C. (1981) Transition state theory. Pp. 135169 in: Kinetics of Geochemical Processes (A.C. Lasaga and R.J. Kirkpatrick, editors). Reviews in Mineralogy, 8, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Lin, F.-C. and Clemency, C.V. (1981) The dissolution kinetics of brucite, antigorite, talc and phlogopite at room temperature and pressure.. American Mineralogist, 66, 801806.Google Scholar
Luce, R.W., Bartlett, W.B. and Parks, G.A. (1972) Dissolution kinetics of magnesium silicates. Geochimica et Cosmochimica Acta, 36, 3550.CrossRefGoogle Scholar
Luttge, A., Arvidson, R.S. and Fischer, C. (2013) A stochastic treatment of crystal dissolution kinetics. Elements, 9, 183188.CrossRefGoogle Scholar
Mast, M.A. and Drever, J.I. (1987) The effect of oxalate on the dissolution rates of oligoclase and tremolite. Geochimica et Cosmochimica Acta, 51, 25592568.CrossRefGoogle Scholar
Murphy, W.M. and Helgeson, H.C. (1987) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. III. Activated complexes and the pH-dependence of the rates of feldspar, pyroxene, wollastonite, and olivine hydrolysis.. Geochimica et Cosmochimica Acta, 51, 31373153.CrossRefGoogle Scholar
Murphy, W.M. and Helgeson, H.C. (1989) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. IV. Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz and nepheline. American Journal of Science, 289, 17101.CrossRefGoogle Scholar
Oelkers, E.H. (2001a) General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica et Cosmochimica Acta, 65, 37033719.CrossRefGoogle Scholar
Oelkers, E.H. (2001b) An experimental study of forsterite dissolution rates as a function of temperature and aqueous Mg and Si concentration. Chemical Geology, 175, 485494.CrossRefGoogle Scholar
Oelkers, E.H. and Cole, D.R. (2008) Carbon dioxide sequestration: A solution to a global problem. Elements 4, 305310.Google Scholar
Oelkers, E.H. and Schott, J. (1998) Does organic acid adsorption affect alkali-feldspar dissolution rates? Chemical Geology, 151, 235245.Google Scholar
Oelkers, E.H. and Schott, J. (2001) An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution.. Geochimica et Cosmochimica Acta, 65, 12191231.CrossRefGoogle Scholar
Oelkers, E.H. and Schott, J. (2005) Geochemical aspects of CO2 sequestration. Chemical Geology, 217, 183186.CrossRefGoogle Scholar
Oelkers, E.H., Gislason, S.R. and Matter, J. (2008a) Mineral carbonation of CO2 . Elements, 4, 337.Google Scholar
Oelkers, E.H., Schott, J., Gauthier, J.-M. and Herrero- Roncal, T. (2008b) An experimental study of the dissolution rates of muscovite. Geochimica et Cosmochimica Acta, 72, 49484961.CrossRefGoogle Scholar
Oelkers, E.H. Golubev, S.V., Chaïrat, C., Pokrovsky, O.S. and Schott, J. (2009) The surface chemistry of multi-oxide silicates. Geochimica et Cosmochimica Acta, 73, 46174634.CrossRefGoogle Scholar
Olsen, A.A. and Rimstidt, J.D. (2008) Oxalate-promoted forsterite dissolution at low pH. Geochimica et Cosmochimica Acta, 72, 17581766.CrossRefGoogle Scholar
Oze, C.a.d Solt, K. (2010) Biodurability of chrystolite and tremolite asbestos in simulated lung and gastric fluids. American Mineralogist, 95, 825831.CrossRefGoogle Scholar
Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s guide to PHREEQC (Version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water Resources Report 994259.Google Scholar
Petit, J.C., Della, M.G., Dran, J.C., Schott, J. and Berner, R.A. (1987) Mechanism of diopside dissolution from hydrogen depth profiling. Nature, 325, 705707.CrossRefGoogle Scholar
Pokrovsky, O.S. and Schott, J. (2000) Kinetics and mechanisms of forsterite dissolution at 25ºC and pH from 1 to 12. Geochimica et Cosmochimica Acta, 64, 313325.CrossRefGoogle Scholar
Prigiobbe, V., Costa, G., Baciocchi, R., Hänchen, M. and Mazzotti, M. (2009) The effect of CO2 and salinity on olivine dissolution kinetics at 120ºC. Chemical Engineering Science, 15, 35103515.CrossRefGoogle Scholar
Pugnaloni, A., Giantomassi, F., Lucarini, G., Capella, S., Bloise, A., Di Primo, R. and Belluso, E. (2013) Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: An in vitro pilot study. Acta Histochemica, 115, 100112.CrossRefGoogle Scholar
Robledo, R. and Mossman, B. (1999) Cellular and molecular mechanisms of asbestos-induced fibrosis. Journal of Cellular Physiology, 180, 158166.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Roggli, V.L., Vollmer, R.T., Butnor, K.J. and Sporn, T.A. (2002) Tremolite and mesothelioma, Annals of Occupational Hygiene, 46, 447453.Google Scholar
Rosso, J.J. and Rimstidt, J.D. (2000) A high resolution study of forsterite dissolution rates. Geochimica et Cosmochimica Acta, 64, 797811.CrossRefGoogle Scholar
Rozalen, M., Ramos, M.E., Huertas, F.J., Fiore, S. and Gervilla, F. (2013) Dissolution kinetics and biodurability of tremolite particles in mimicked lung fluids: Effect of citrate and oxalate. Journal of Asian Earth Sciences, 77, 318326.CrossRefGoogle Scholar
Ryu, K.W., Lee, M.G. and Jang, Y.N. (2011) Mechanism of tremolite carbonation. Applied Geochemistry, 26, 1251–1221.CrossRefGoogle Scholar
Saldi, G.D., Kohler, S.J., Marty, N. and Oelkers, E.H. (2007) Dissolution rates of talc as a function of solution composition, pH and temperature.. Geochimica et Cosmochimica Acta, 71, 34463457.CrossRefGoogle Scholar
Saldi, G.D., Schott, J., Pokrovsky, O.S., Gautier, Q. and Oelkers, E.H. (2012) An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100–200ºC as a function of pH, aqueous solution composition and chemical affinity.. Geochimica et Cosmochimica Acta, 83, 93109.CrossRefGoogle Scholar
Schott, J. and Oelkers, E.H. (1995) Dissolution and crystallization rates of silicate minerals as a function of chemical affinity. Pure and Applied Chemistry, 67, 903910.CrossRefGoogle Scholar
Schott, J., Berner, R.A. and Sjoberg, E.L. (1981) Mechanism of pyroxene and amphibole weathering – I. Experimental studies of iron-free minerals. Geochimica et Cosmochimica Acta, 45, 21232135.CrossRefGoogle Scholar
Schott, J., Pokrovsky, O.S. and Oelkers, E.H. (2009) The link between mineral dissolution/precipitation kinetics and solution chemistry. Pp. 207258 in: Thermodynamics and Kinetics of Water–Rock Interaction (E.H. Oelkers and J. Schott, editors). Reviews in Mineralogy and Geochemistry, 70, Mineralogical Society of America, Chantilly, Virginia, USA and the Geochemical Society, St. Louis, Missouri, USA.Google Scholar
Schott, J., Pokrovsky, O.S., Spalla, O., Devreux, F., Gloter, A. and Mielczarski, J.A. (2012) Formation, growth and transformation of leached layers during silicate minerals dissolution: The example of wollastonite.. Geochimica et Cosmochimica Acta, 98, 259281.CrossRefGoogle Scholar
Warren, B.E. (1930) The structure of tremolite, H2Ca2Mg5(SiO3)8 Zeitschrift für Kristallographie, 72, 4257.Google Scholar
Wogelius, R.A. and Walther, J.V. (1991) Olivine dissolution at 25ºC: Effects of pH, CO2 and organic acids.. Geochimica et Cosmochimica Acta, 55, 943954.CrossRefGoogle Scholar
Wogelius, R.A. and Walther, J.V. (1992) Olivine dissolution kinetics at near-surface conditions. Chemical Geology, 97, 101112.CrossRefGoogle Scholar