Hostname: page-component-55f67697df-q9hcs Total loading time: 0 Render date: 2025-05-11T05:21:15.193Z Has data issue: false hasContentIssue false

Amableite-(Ce), Na15[(Ce1.5Na1.5)Mn3]Mn2Zr3□Si[Si24O69(OH)3](OH)2⋅H2O, a new eudialyte-group mineral from Saint-Amable Sill, Québec, Canada

Published online by Cambridge University Press:  12 April 2024

Nikita V. Chukanov*
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Andrey A. Zolotarev
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb. 7/9, Saint-Petersburg 199034, Russia
Christof Schäfer
Affiliation:
Independent researcher, Untereisesheim, Germany
Dmitry A. Varlamov
Affiliation:
Institute of Experimental Mineralogy RAS, Chernogolovka, 142432 Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Sergey M. Aksenov
Affiliation:
Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209 Russia Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209 Russia
Svetlana A. Vozchikova
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St. Petersburg State University, University Emb. 7/9, Saint-Petersburg 199034, Russia
*
Corresponding author: Nikita V. Chukanov; Email: [email protected]

Abstract

The new eudialyte-group mineral amableite-(Ce), ideally Na15[(Ce1.5Na1.5)Mn3]Mn2Zr3□Si[Si24O69(OH)3](OH)2⋅H2O, was discovered in a peralkaline pegmatite at Saint-Amable Sill, Montérégie, Québec, Canada. The associated minerals are albite, microcline, aegirine, serandite, natrolite, yofortierite, and an unidentified titanosilicate forming minute grains. Amableite-(Ce) occurs as yellow equant or thick tabular crystals up to 2 mm across. The observed crystal forms are {0001}; the subordinate forms are {11$\bar{2}$0}, {10$\bar{1}$1}, and {10$\bar{1}$0}. Amableite-(Ce) is brittle, with a Mohs hardness of 5. D(meas) = 2.89(1), D(calc) = 2.899 g⋅cm–3. Amableite-(Ce) is optically anomalously biaxial (+) with α ≈ β = 1.603(2) and γ = 1.608(2). The chemical composition is (wt.%, electron microprobe, H2O measured by means of a modified Penfield method): Na2O 14.20, K2O 0.41, CaO 1.89, MnO 8.25, Fe2O3 2.40, La2O3 3.10, Ce2O3 4.19, Pr2O3 0.16, Nd2O3 0.59, SiO2 49.41, ZrO2 11.17, HfO2 0.24, TiO2 0.68, Nb2О5 1.54, Cl 0.26, H2O 1.70, –O≡Cl –0.06, total 100.13. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R1 = 0.0423. Amableite-(Ce) is trigonal, space group R3, with a = 14.1340(3) Å, c = 30.3780(11) Å and V = 5255.6(3) Å3. The crystal-chemical formula is (Na12.93K0.27Ce0.06)Σ13.26[(Mn2.49Ce0.30Ca0.21)Σ3.00(Ce1.14Na1.04Ca0.82)Σ3.00](Mn1.05Fe0.901.05)Σ3.00(Zr2.85Ti0.12Hf0.03)Σ3.00(□0.40Nb0.36Si0.24)Σ1.00(Si0.880.12)Σ1.00[Si24(O70.44(OH)1.56)Σ72.00][(OH)2.20(H2O)1.27]Σ3.47Cl0.22 (Z = 3). Infrared and Raman spectra are given. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)(hkl)] are: 11.34 (51)(101), 7.06 (76)(110), 4.312 (63)(205), 3.783 (38)(033), 3.538 (43)(027, 220), 2.963 (84)($\bar{3}$45), 2.837 (100)(404). The mineral is named after the discovery locality.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Daniel Atencio

References

Asmis, K.R., Pivonka, N.L., Santambrogio, G., Brümmer, M., Kaposta, C., Neumark, D.M. and Wöste, L. (2003) The gasphase infrared spectrum of the protonated water dimer. Science, 299, 13751381.CrossRefGoogle ScholarPubMed
Asthagiri, D., Pratt, L.R. and Kress, J.D. (2005) Ab initio molecular dynamics and quasichemical study of H+(aq). Proceedings of the National Academy of Sciences of the United States of America, 102, 67046708. www.pnas.org_cgi_doi_10.1073_pnas.0408071102CrossRefGoogle ScholarPubMed
Biswas, R., Carpenter, W., Fournier, J.A., Voth, G.A. and Tokmakoff, A. (2017) IR spectral assignments for the hydrated excess proton in liquid water. Journal of Chemical Physics, 146, paper 154507. https://doi.org/10.1063/1.4980121CrossRefGoogle ScholarPubMed
Brandenburg, K. and Putz, H. (2005) DIAMOND Version 3. Crystal Impact GbR. Bonn, Germany.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc. Russ. Mineral. Soc.), 146, 104107.Google Scholar
Carpenter, W.B. (2020) Aqueous Proton Structures and Dynamics Observed With Nonlinear Infrared Spectroscopy. Ph. D. dissertation, the University of Chicago, 346 pp.Google Scholar
Christie, R.A. (2004) Theoretical Studies of Hydrogen-Bonded Clusters. Ph.D. Thesis, University of Pittsburgh, 135 pp.Google Scholar
Chukanov, N.V., Pekov, I.V., Zadov, A.E., Korovushkin, V.V., Ekimenkova, I.A. and Rastsvetaeva, R.K. (2003) Ikranite, (Na,H3O)15(Ca,Mn,REE)6Fe3+2Zr3(□,Zr)(□,Si)Si24O66(O,OH)6Cl⋅nH2O, and raslakite, Na15Ca3Fe3(Na,Zr)3Zr3(Si,Nb)(Si25O73)(OH,H2O)3(Cl,OH), new eudialyte-group minerals from the Lovizero massif. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 132, 2233 [in Russian].Google Scholar
Chukanov, N.V., Aksenov, S.M., Pekov, I.V., Belakovskiy, D.I., Vozchikova, S.A. and Britvin, S.N. (2020) Sergevanite, Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3⋅H2O, a new eudialyte-group mineral from the Lovozero alkaline massif, Kola Peninsula. The Canadian Mineralogist, 58, 421436, https://doi.org/10.3749/canmin.2000006.CrossRefGoogle Scholar
Chukanov, N.V., Vigasina, M.F., Rastsvetaeva, R.K., Aksenov, S.M., Mikhailova, Ju.A. and Pekov, I.V. (2022) The evidence of hydrated proton in eudialyte-group minerals based on Raman spectroscopy data. Journal of Raman Spectroscopy, 53, 11881203, https://doi.org/10.1002/jrs.6343.CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M., Kazheva, O.N., Pekov, I.V., Varlamov, D.A., Vigasina, M.F., Belakovskiy, D.I., Vozchikova, S.A. and Britvin, S.N. (2023) Selsurtite, (H3O)12Na3(Ca3Mn3)(Na2Fe)Zr3□Si[Si24O69(OH)3] (OH)Cl⋅H2O, a new eudialyte-group mineral from the Lovozero alkaline massif, Kola Peninsula. Mineralogical Magazine, 87, 241251, https://doi.org/10.1180/mgm.2022.136.CrossRefGoogle Scholar
Chukanov, N.V., Zolotarev, A.A., Schäfer, C., Varlamov, D.A., Pekov, I.V., Vigasina, M.F., Belakovskiy, D.I., Aksenov, S.M., Vozchikova, S.A. and Britvin, S.N. (2024) Amableite-(Ce), IMA 2023-075. CNMNC Newsletter 77. Mineralogical Magazine, 88, 203209, https://doi.org/10.1180/mgm.2024.5.Google Scholar
Corongiu, G., Kelterbaum, R. and Kochanski, E. (1995) Theoretical studies of H+(H2O)5. Journal of Physical Chemistry, 99, 80388044, https://doi.org/10.1021/J100020A029.CrossRefGoogle Scholar
CrysAlisPro (2015) CrysAlisPro Software System, version 1.171.39.44. Rigaku Oxford Diffraction: Oxford, UK.Google Scholar
Davis, P., Stopic, S., Balomenos, E., Panias, D., Paspaliaris, I. and Friedrich, B. (2017) Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Minerals Engineering, 108, 115122.CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Friedrich, B., Hanebuth, M., Kruse, S., Tremel, A. and Vossenkaul, D. (2016) Method for opening a eudialyte mineral. Patent number EP2995692 A1.Google Scholar
Grice, J.D. and Gault, R.A. (2006) Johnsenite-(Ce): a new member of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. The Canadian Mineralogist, 44, 105115.CrossRefGoogle Scholar
Headrick, J.M., Bopp, J.C. and Johnson, M.A. (2004) Predissociation spectroscopy of the argon-solvated H5O2+ “Zundel” cation in the 1000–1900 cm–1 region. Journal of Chemical Physics, 121, 1152311526.CrossRefGoogle ScholarPubMed
Horváth, L., Pfenninger Horváthm, E., Gault, R.A. and Tarasoff, P. (1998) Mineralogy of the Saint Amable sill, Varennes and Saint Amable, Québec, Canada. Mineralogical Record, 29, 83118.Google Scholar
Johnsen, O., Grice, J.D. and Gault, R.A. (1999) Oneillite: a new Ca-deficient and REE-rich member of the eudialyte group from Mont Saint-Hilaire, Québec, Canada. The Canadian Mineralogist, 37, 12951301.Google Scholar
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R. and Pekov, I.V. (2003) Nomenclature of eudialyte-group minerals. The Canadian Mineralogist, 41, 785794.CrossRefGoogle Scholar
Khomyakov, A.P., Dusmatov, V.D., Ferraris, G., Gula, A., Ivaldi, G. and Nechelyustov, G.N. (2003) Zirsilite-(Ce), ((Na,□)12(Ce,Na)3Ca6Mn3Zr3Nb(Si25O73)(OH)3(CO3)⋅H2O, and carbokentbrooksite, ((Na,□)12(Na,Ce)3Ca6Mn3Zr3Nb(Si25O73)(OH)3(CO3)⋅H2O – two new eudialyte-group minerals from the Dara-i-Pioz alkaline massif, Tajikistan. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 132, 4051 [in Russian].Google Scholar
Khomyakov, A.P., Nechelyustov, G.N. and Rastsvetaeva, R.K. (2007) Aqualite, (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl, a new eudialyte-group mineral from Inagli alkaline massif (Sakha-Yakutia, Russia), and the problem of oxonium in hydrated eudialytes. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 136, 3955 [in Russian].Google Scholar
Khomyakov, A.P., Nechelyustov, G.N. and Rastsvetaeva, R.K. (2009) Voronkovite, Na15(Na,Ca,Ce)3(Mn,Ca)3Fe3Zr3Si26O72(OH,O)4Cl⋅H2O, a new mineral species of the eudialyte group from the Lovozero alkaline pluton, Kola Peninsula, Russia. Geology of Ore Deposits, 51, 750756.CrossRefGoogle Scholar
Kim, J., Schmitt, U.W., Gruetzmacher, J.A., Voth, G.A. and Scherer, N.E. (2002) The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis. Journal of Chemical Physics, 116, 737746.CrossRefGoogle Scholar
Komatsuzaki, T. and Ohmine, I. (1994) Energetics of proton transfer in liquid water. I. Ab initio study for origin of many-body interaction and potential energy surfaces. Chemical Physics, 180, 239269, https://doi.org/10.1016/0301-0104(93)e0424-t.CrossRefGoogle Scholar
Laria, D., Martí, J. and Guàrdia, E. (2004) Protons in supercritical water: A multistage empirical valence bond study. Journal of American Chemical Society, 126, 21252134, https://doi.org/10.1021/ja0373418.CrossRefGoogle Scholar
Lebedev, V.N. (2003) Sulfuric acid technology for processing of eudialyte concentrate. Russian Journal of Applied Chemistry, 76, 15591563.CrossRefGoogle Scholar
Lebedev, V.N., Shchur, T.E., Maiorov, D.V., Popova, L.A. and Serkova, R.P. (2003) Specific features of acid decomposition of eudialyte and certain rare-metal concentrates from Kola Peninsula. Russian Journal of Applied Chemistry, 76, 11911196.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Ma, Y.Q., Stopic, S. Huang, Z.Z. and Freidrich, B. (2019) Selective recovery and separation of Zr and Hf from sulfuric acid leach solution using anion exchange resin. Hydrometallurgy, 189, UNSP 105143.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 41, 9891002.Google Scholar
McClellan, A.L. and Pimentel, G.C. (1960) Hydrogen bond. W.H. Freeman & Co Ltd, California Univ. 475 pp.Google Scholar
Novak, A. (1974) Hydrogen bonding in solids correlation of spectroscopic and crystallographic data. Pp. 177216 in: Large Molecules. Springer, Berlin-Heidelberg, https://doi.org/10.1007/BFb0116438.CrossRefGoogle Scholar
Ortega, I.K., Escribano, R., Herrero, V.J., Maté, B. and Moreno, M.A. (2005) The structure and vibration frequencies of crystalline HCl trihydrate. Journal of Molecular Structure, 742, 147152, https://doi.org/10.1016/j.molstruc.2005.01.005.CrossRefGoogle Scholar
Paddison, S.J. and Elliott, J.A. (2005) Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. Journal of Physical Chemistry A, 109, 75837593, https://doi.org/10.1021/jp0524734CrossRefGoogle Scholar
Pol'shin, E.V., Platonov, A.N., Borutsky, B.E., Taran, M.N. and Rastsvetaeva, R.K. (1991) Optical and Mössbauer study of minerals of the eudialyte group. Physics and Chemistry of Minerals, 18, 117125.CrossRefGoogle Scholar
Rastsvetaeva, R.K., Chukanov, N.V. and Aksenov, S.M. (2012) Eudialyte-Group Minerals. Nizhny Novgorod State University, Nizhny Novgorod, 230 pp. [in Russian].Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Shtukenberg, A. and Punin, Yu.O.B. (2007) Optically Anomalous Crystals. Springer, Dordrecht, The Netherlands, 279 pp.Google Scholar
Sobolewski, A.L. and Domcke, W. (2002a) Hydrated hydronium: a cluster model or solvated electron? Physical Chemistry Chemical Physics, 4, 410, https://doi.org/10.1039/b107373g.CrossRefGoogle Scholar
Sobolewski, A.L. and Domcke, W. (2002b) Ab initio investigation of the structure and spectroscopy of hydronium-water clusters. Journal of Physical Chemistry A, 106, 41584167.CrossRefGoogle Scholar
STOE (2003) WinXPow Version 2.08. STOE & Cie GmbH, Darmstadt, Germany.Google Scholar
Vener, M.V. and Librovich, N.B. (2009) The structure and vibrational spectra of proton hydrates: H5O2+ as a simplest stable ion. International Reviews in Physical Chemistry, 28, 407434. https://doi.org/10.1080/01442350903079955.CrossRefGoogle Scholar
Vyas, N.K., Sakore, T.D. and Biswas, A.B. (1978) The structure of 4-methyl-5-sulphosalicylic acid tetrahydrate. Acta Crystallographica B, 34, 34863488, https://doi.org/10.1107/S0567740878011413CrossRefGoogle Scholar
Zakharov, V.I., Maiorov, D.V., Alishkin, A.R. and Matveev, V.A. (2011) Causes of insufficient recovery of zirconium during acidic processing of Lovosero eudialyte concentrate. Russian Journal of Non-Ferrous Metals, 52, 423428.CrossRefGoogle Scholar
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material
Download Chukanov et al. supplementary material(File)
File 623.6 KB