Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T05:30:05.709Z Has data issue: false hasContentIssue false

Aluminotaipingite-(CeCa), (Ce6Ca3)Al(SiO4)3[SiO3(OH)]4F3, a new member of the cerite-supergroup minerals

Published online by Cambridge University Press:  03 July 2023

Italo Campostrini
Affiliation:
Università degli Studi di Milano, UNITECH COSPECT, Piattaforme Tecnologiche di Ateneo, via Golgi 19, I-20133 Milano, Italy
Francesco Demartin*
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milano, Italy
Giuseppe Finello
Affiliation:
Independent Researcher, Corso Casale 265, 10132 Torino, Italy
Pietro Vignola
Affiliation:
CNR-Istituto di Geologia Ambientale e Geoingegneria, Via Mario Bianco 9-20131 Milano, Italy
*
Corresponding author: Francesco Demartin; Email: [email protected]

Abstract

Aluminotaipingite-(CeCa), (Ce6Ca3)Al(SiO4)3[SiO3(OH)]4F3, is a new member of the cerite-supergroup minerals, whose general chemical formula is A9XM[TO3Ø]7Z3, (A = REE, Ca, Sr, Na and □; X = □, Ca, Na and Fe2+; M = Mg, Fe2+, Fe3+, Al and Mn; T = Si and P; Ø = O and OH; Z = □, OH and F). It was found in cavities of a leucogranitic orthogneiss at the Casette quarry, Montoso, Bagnolo Piemonte, Cuneo Province, Piedmont, Italy. Crystals of aluminotaipingite-(CeCa) are light pink to pink, transparent or semi-transparent, with a vitreous lustre. It forms pyramidal crystals up to 0.07 mm in size and observed forms are {0 0 1}, {1 0 $\bar{2}$}. The tenacity is brittle, no distinct cleavage is observed and the fracture is uneven. The mineral does not fluoresce in long- or short-wave ultraviolet light. The streak is white. Hardness (Mohs) = 5. The calculated density is 4.476 g cm–3.

The mineral is trigonal, space group R3c, with a = 10.658(3), c = 37.865(9) Å, V = 3725(2) Å3 and Z = 6. The eight strongest powder X-ray diffraction lines are [dobs, Å (I, %) (h k l)]: 8.38(29)(0 1 2), 4.499(28)(2 0 2), 3.282(41)(2 1 4), 2.936(100)(0 2 10), 2.816(51)(1 2 8), 2.669(37)(2 2 0), 2.207 (29)(3 0 12) and 1.935(35)(2 3 8). The structure was refined to R =0.0306 for 2297 reflections with I >2σ(I). The crystal structure of aluminotaipingite-(CeCa) contains two nine-fold coordinated sites (A1 and A2), which are occupied mainly by lanthanides, and a third nine-fold coordinated A3 site containing almost equal amounts of lanthanides and Ca. The X site is vacant and at the octahedral M site aluminium prevails over Fe3+. Among the three independent T sites, T2 belongs to a (SiO4)4– anion, whereas T1 and T3 belong to (SiO3OH)3– anions. Fluorine is involved in coordination with the A1 and A3 sites.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Atencio, D. and Azzi, A.A. (2020) Cerite: a new supergroup of minerals and cerite-(La) renamed ferricerite-(La). Mineralogical Magazine, 84, 928931.CrossRefGoogle Scholar
Atencio, D., Azzi, A.A., Qu, K., Miyawaki, R., Bosi, F. and Momma, K. (2023) Changes to the cerite group nomenclature. Mineralogical Magazine, 87, 639643, https://doi.org/10.1180/mgm.2023.44Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (2009) Recent developments in the methods and applications of the bond valence model. Chemical Review, 109, 68586919.CrossRefGoogle Scholar
Campostrini, I., Demartin, F., Finello, G. and Vignola, P. (2023) Aluminotaipingite-(CeCa), IMA 2022-126. CNMNC Newsletter 73. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.44Google Scholar
Chukanov, N.V. (2013) Infrared Spectra of Mineral Species: Extended Library. Springer Science, Business Media, London, pp. 378421.Google Scholar
Frost, R.L., Scholz, R., Lopez, A., Xi, Y.F., Granja, A., Gobac, Z.Z. and Lima, R.M.F. (2013) Infrared and Raman Spectroscopic characterization of the silicate mineral olmiite CaMn2+[SiO3OH)](OH) implications for the molecular structure. Journal of Molecular Structure, 1053, 2226.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Jarosewich, E. and Boatner, L. (1991) Rare-earth element reference samples for electron microprobe analysis. Geostandards Newsletter, 15, 397399, https://doi.org/10.1111/j.1751-908X.1991.tb00115.xCrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and OH⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Moore, P.B. and Shen, J. (1983) Cerite, RE9(Fe3+, Mg)(SiO4)6(SiO3OH)(OH)3: its crystal structure and relation to whitlockite. American Mineralogist, 68, 9961003.Google Scholar
Nestola, F., Guastoni, A., Cámara, F., Secco, L., Dal Negro, A., Pedron, D. and Beran, A. (2009) Aluminocerite-(Ce): A new species from Baveno, Italy: Description and crystal-structure determination, American Mineralogist, 94, 487493.CrossRefGoogle Scholar
Pakhomovsky, Y.A., Men'Shikov, Y.P., Yakovenchuk, V.N., Ivanyuk, G.Y., Krivovichev, S.V. and Burns, P.C. (2002) Cerite-(La), (LaCeCa)9(FeCaMg)(SiO4)3[SiO3(OH)]4(OH)3, a new mineral species from the Khibina alkaline massif: occurrence and crystal structure. The Canadian Mineralogist, 40, 11771184.CrossRefGoogle Scholar
Qu, K., Sima, X., Fan, G., Li, G., Shen, G., Chen, H., Liu, X., Yin, Q., Li, T. and Wang, Y. (2020) Taipingite-(Ce), (Ce73+Ca2)Σ9Mg(SiO4)3[SiO3(OH)]4F3, a new mineral from Taipingzhen REE deposit, North Qinling Orogen, central China. Geoscience Frontiers, 11, 23392346.CrossRefGoogle Scholar
Sandrone, R., Cadoppi, P., Sacchi, R. and Vialon, P. (1993) The Dora-Maira Massif. Pp. 317325 in: Pre-Mesozoic geology in the Alps (Von Raumer, J.F. and Neubauer, F. (editors). Springer, Berlin.CrossRefGoogle Scholar
Sandrone, R., Colombo, A., Fiore, L., Fornaro, M., Lovera, E., Tunesi, A. and Cavallo, A. (2004) Contemporary natural stones from the Italian western Alps (Piedmont and Aosta Valley Regions). Periodico di Mineralogia, 73, 211226.Google Scholar
Sheldrick, G.M. (2017) SHELXL. Crystal Structure Refinement – Multi CPU version 2017/1.Google Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Supplementary material: PDF

Campostrini et al. supplementary material

Campostrini et al. supplementary material 1

Download Campostrini et al. supplementary material(PDF)
PDF 124.4 KB
Supplementary material: File

Campostrini et al. supplementary material

Campostrini et al. supplementary material 2

Download Campostrini et al. supplementary material(File)
File 459.1 KB