Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T23:22:04.977Z Has data issue: false hasContentIssue false

Alkali-deficient tourmaline from the Sullivan Pb-Zn-Ag deposit, British Columbia

Published online by Cambridge University Press:  05 July 2018

Shao-Yong Jiang
Affiliation:
Department of Geology, University of Bristol, Bristol, BS8 IRJ, UK Max-Planck-Institut for Chemie, Abt. Geochemie, Postfach 3060, 55020 Mainz, Germany
Martin R. Palmer
Affiliation:
Department of Geology, University of Bristol, Bristol, BS8 IRJ, UK
John F. Slack
Affiliation:
U.S. Geological Survey, National Center, MS 954, Reston, VA 20192, USA

Abstract

Alkali-deficient tourmalines are found in albitized rocks from the hanging-wall of the Sullivan Pb-Zn-Ag deposit (British Columbia, Canada). They approximate the Mg-equivalent of foitite with an idealized formula □(Mg2Al)Al6Si6O18(BO3)3(OH)4. Major chemical substitutions in the tourmalines are the alkali-defect type [Na*(x) + Mg*(Y) = □(x) + Al(Y)] and the uvite type [Na*(x) + Al(Y) = Ca(x) + Mg*(Y)], where Na* = Na + K, Mg* = Mg + Fe + Mn. The occurrence of these alkali-deficient tourmalines reflects a unique geochemical environment that is either alkali-depleted overall or one in which the alkalis preferentially partitioned into coexisting minerals (e.g. albite).

Some of the alkali-deficient tourmalines have unusually high Mn contents (up to 1.5 wt.% MnO) compared to other Sullivan tourmalines. Manganese has a strong preference for incorporation into coexisting garnet and carbonate at Sullivan, thus many tourmalines in Mn-rich rocks are poor in Mn (<0.2 wt.% MnO). It appears that the dominant controls over the occurrence of Mn-rich tourmalines at Sullivan are the local availability of Mn and the lack of other coexisting minerals that may preferentially incorporate Mn into their structures.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, P.M. (1984) Piemontite-bearing rocks from the Olary district, South Australia. Austral. J. Earth Sci., 31, 203-16.CrossRefGoogle Scholar
Ayuso, R.A. and Brown, C.E. (1984) Manganese-rich red tourmaline from the Fowler talc belt, New York. Canad. Mineral., 22, 327-31.Google Scholar
Bandyopadhyay, B.K., Slack, J.F., Palmer, M.R. and Roy, A. (1993) Tourmalinites associated with stratabound massive sulphide deposits in the Proterozoic Sakoli Group, Nagpur district, central India. In Proc. Eighth Quadrennial IAGOD Symp.: E (Mauriee, Y. T., ed.). Sehweizerbart'sche Verlagsbuchhandiung, Stuttgart, 867-85.Google Scholar
Barrett, T.J., Cattalani, S. and MacLean, W.H. (1993) Volcanic lithogeochemistry and alteration of the Delbridge massive sulfide deposit, Noranda, Quebec. J. Geochem. Expl., 48, 135-73.CrossRefGoogle Scholar
Burns, P.C., MacDonald, D.J. and Hawthorne, F.C. (1994) The crystal chemistry of manganese-bearing elbaite. Canad. Mineral, 32, 31-41.Google Scholar
Burt, D.M. (1989) Vector representation of tourmaline compositions. Amer. Mineral., 74, 826—39.Google Scholar
Byerly, G.R., Carpenter, P., Henry, D.J. and Lowe, D.R. (1986) Tourmalines of the Barberton greenstone belt. Geol. Soc. Amer. Abstr. Programs, 18, 554.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1962) Rock-forming Minerals. v.1, 270 p, Wiley, New York.Google Scholar
Dietrich, R.V. (1985) The Tourmaline Group. 300 p, Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
El-Hinnawi, E.E. and Hofmann, R. (1966) Optiche und chemische Untersuchungen an neun Turmalinen (Elbaiten). Neues Jahrb. Mineral, Mh., 80-9.Google Scholar
Ethier, V.G. and Campbell, F.A. (1977) Tourmaline concentrations in Proterozoic sediments of the southern Cordillera of Canada and their economic significance. Canad. J. Earth Sci., 14, 2348-63.CrossRefGoogle Scholar
Foit, F.F., Jr. and Rosenberg, P.E. (1977) Coupled substitutions in the tourmaline group. Contrib. Mineral. Petrol., 62, 109-27.CrossRefGoogle Scholar
Foit, F.F., Jr., Fuchs, Y. and Myers, P.E. (1989) Chemistry of alkali-deficient schorls from two tourmaline-dumortierite deposits. Amer. Mineral., 74, 1317-24.Google Scholar
Fuchs, Y. and Maury, R. (1995) Borosilicate alteration associated with U-Mo-Zn and Ag-Au-Zn deposits in volcanic rocks. Min. Deposita, 30, 449—59.CrossRefGoogle Scholar
Hamilton, J.M., Bishop, D.T., Morris, H.C. and Owens, O.E. (1982) Geology of the Sullivan orebody, Kimberley B.C., Canada. In Precambrian Sulphide Deposits (Hutchinson, R. W., Spence, C. D., and Franklin, J. M., eds.), Geol. Assoc. Canada, Spec. Paper 25, 597665.Google Scholar
Haralampiev, A.G. and Grover, J. (1993) Synthesis experiments in the binary system tsilaisite–dravite, Na(MnxMg1-x)3Al6(BO3)3Si6O18(OH)4, at T = 375 - 700° and P = 2000 bars; does garnet control the occurrence of tourmaline. Geol. Soc. Amer. Abstr. Program, 25, 94-5.Google Scholar
Haralampiev, A.G. and Grover, J. (1994) Experimental mineralogy of tourmaline group: The binary system tsilaisite-dravite, Na(MnxMg1-x)3Al6(BO3)3Si6O18(OH)4, at T = 375 - 700° and P = 2000 and 300 bars. lnternat. Mineral Assoc. Meeting Abstr., 16, 165-6.Google Scholar
Henry, D.J. and Dutrow, B.L. (1990) Ca substitution in Li-poor aluminous tourmaline. Canad. Mineral., 28, 111-24.Google Scholar
Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenetie indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Amer. Mineral., 70, 115.Google Scholar
Höy, T. (1993) Geology of the Purcell Supergroup in the Fernie west-half map area, southeastern British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources Bulletin, 84, 157pp.Google Scholar
Jiang, S.-Y. (1995) Chemical and boron isotopic compositions of tourmaline from sedex-type and metaevaporite ore deposits. Ph.D. thesis, Bristol University, 286pp.Google Scholar
Jiang, S.-Y., Palmer, M.R., McDonald, A.M., Slack, J.F. and Leiteh, C.H.B. (1996a) Feruvite from the Sullivan Pb-Zn-Ag deposit, British Columbia. Canad. Mineral., 34, 733-40.Google Scholar
Jiang, S.-Y., Palmer, M.R. and Slack, J.F. (1996b) Mn-rich ilmenite from the Sullivan Pb-Zn-Ag deposit, British Columbia. Canad. Mineral., 34, 29-36.Google Scholar
Kunitz, W. (1929) Die Misehungsreihen in der Turmalingruppe und die genetisehen Beziehungen zwischen Turmalinen and Glimmern. Chemie der Erde, 4, 208-51.Google Scholar
Leckebusch, R. (1978) Chemical composition and eolour of tourmaline from Darre Peeh (Nuristan, Afghanistan). Neues Jahrb. Mineral, Abh., 133, 53-70.Google Scholar
Leitch, C.H.B. (1992) Mineral chemistry of selected silicates, carbonates and sulphides in the Sullivan and North Star stratiform Zn-Pb deposits, British Columbia and in district-scale altered and unaltered sediments. Geol. Survey Canada, Current Research Paper, 92-1E, 83-93.CrossRefGoogle Scholar
MacDonald, D.J., Hawthorne, F.C. and Grice, J.D. (1993) Foitite, ☐[Fe2+ 2(Al,Fe3+)]Al6Si6(BO3)3(OH)4, a new alkali-deficient tourmaline: description and crystal structure. Amer. Mineral., 78, 1299-303.Google Scholar
Rosenberg, P.E. and Foit, F.F., Jr. (1979) Synthesis and characterization of alkali-free tourmaline. Amer. Mineral., 64, 180-6.Google Scholar
Sahama, T.G., Knorring, O.V. and Tomroos, R. (1979) On tourmaline. Lithos, 12, 109-14.CrossRefGoogle Scholar
Schmetzer, K. and Bank, H. (1984) Crystal chemistry of tsilasite (manganese tourmaline) from Zambia. Neues Jahrb. Mineral. Mh., 61—9.Google Scholar
Selway, J., Hawthorne, F.C., Novak, M. and Cerny, P. (1995) Aluminous X-site vacant tourmaline from the Hradisko pegmatite, Czech Republic. Geol. Assoc. Canada - Mineral. Assoc. Canada Prog. Abstr., 20, A-96.Google Scholar
Shaw, D.R., Hodgson, C.J., Leitch, C.H.B. and Turner, R.J.W. (1993a) Geochemistry of tourmaline, musco-vite, and chlorite-garnet-biotite alteration, Sullivan Zn-Pb deposit, British Columbia. Geol. Survey Canada, Current Research Paper, 93-1A, 97107.Google Scholar
Shaw, D.R., Hodgson, C.J., Leitch, C.H.B. and Turner, R.J.W. (1993b) Geochemistry of albite-chlorite-pyrite and chlorite-pyrrhotite alteration, Sullivan Zn-Pb deposit, British Columbia. Geol. Survey Canada, Current Research Paper, 93-1A, 109-18.Google Scholar
Shigley, L.E., Kane, R.E. and Manson, D.V. (1986) A notable Mn-rich gem elbaite tourmaline and its relationship to “tsilaisite”. Amer. Mineral., 71, 1214-6.Google Scholar
Shimoda, N. (1957) Geochemical studies on the pegmatite minerals. V. Tourmalines from pegmatite of Sakihama, Iwate. Nippon kagaku Zasshi, 77, 1001-3.CrossRefGoogle Scholar
Slack, J.F. (1993) Models for tourmalinite formation in the Middle Proterozoic Belt and Purcell supergroups (Rocky Mountains) and their exploration significance. Geol. Survey Canada, Current Research Paper, 93-1E, 3340.Google Scholar
Slack, J.F. and Coad, P.R. (1989) Multiple hydrothermal and metamorphic events in the Kidd Creek volcanogenic massive sulphide deposit, Timmins, Ontario: evidence from tourmalines and chlorites. Canad. J. Earth Sci., 26, 694715.CrossRefGoogle Scholar
Slack, J.F., Shaw, D.R., Leitch, C.H.B. and Turner, R.J.W. (1995) Geochemistry of tourmalinites and coticules from the sediment-hosted Sullivan Zn-Pb-Ag deposit, British Columbia, Canada. Geol. Assoc. Canada - Mineral. Assoc. Canada Prog. Abstr., 20, A-99.Google Scholar
Slivko, M.M. (1961) On manganese tourmalines. Internat. Geol. Rev., 3, 195201.CrossRefGoogle Scholar
Turner, R.J.W. and Leitch, C.H.B. (1992) Relationship of albitic and chloritic alteration to gabbro dykes and sills at the Sullivan deposit and nearby area, southeastern British Columbia. Geol. Survey Canada, Current Research Paper, 92-1E, 95-106.CrossRefGoogle Scholar
Werding, G. and Schreyer, W. (1984) Alkali-free tourmaline in the system MgO-Al2O3-B2O3-SiO2-H2O. Geochim. Cosmochim. Acta, 48, 1331-44.CrossRefGoogle Scholar