Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T11:57:39.919Z Has data issue: false hasContentIssue false

Zaoyang chondrite cooling history from Fe2+-Mg intracrystalline ordering in pyroxenes

Published online by Cambridge University Press:  05 July 2018

Gian Mario Molin
Affiliation:
Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, I-35100 Padova, Italy
Mario Tribaudino
Affiliation:
Dipartimento di Scienze Mineralogiche e Petrologiche, Università di Torino, Via Valperga Caluso 37, I-10125 Torino, Italy
Elisabetta Brizi
Affiliation:
Dipartimento di Scienze della Terra, Università di Perugia, Piazza Università, I-06100 Perugia, Italy

Abstract

The crystal chemistry of clinopyroxene, orthopyroxene and olivine from a crushed fragment of the H5 Zaoyang chondrite has been investigated by X-ray structure refinement and detailed microprobe analysis. The meteoritic pyroxenes have cell and polyhedral volumes which compare well with such data from terrestrial pyroxenes that typically crystallize at low-pressure. Fe2+ and Mg are rather disordered in M1 and M2 sites of clino- and orthopyroxenes; the closure temperatures of the exchange reaction are 600 and 512°C respectively, which is consistent with a reasonably fast cooling rate, estimated to be of the order of 1°C/day.

The closure temperature for the intercrystalline Ca-Mg exchange reaction for clino- and orthopyroxenes is 900°C as calculated from clino- and orthopyroxene intergrowth.

The cooling rates obtained from Fe2+-Mg intracrystalline partitioning suggest a cooling of the order of degrees per day at temperatures of 600–500°C due to a strong loss of heat by irradiation.

Type
Extraterrestrial Material
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anovitz, L. M., Essene, E. J., and Dunhan, W. R. (1988) Order-disorder experiments on orthopyr-oxenes: Implications for the orthopyroxene geos-peedometer. Amer. Mineral., 73, 1060–73.Google Scholar
Bertolo, S. and Nimis, P. (1993) Crystal chemical and structural variations in orthopyroxenes from different petrogenetic environments. Euorpean J. Mineral 5, 707-19.Google Scholar
Dal Negro, A., Carbonin, S., Molin, G. M., Cundari, A. and Piccirillo, E. M. (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional and alkaline basaltic rocks. In Advances in Physical Geochemistry 2 (Saxena S. K. ed). Springer-Verlag, Berlin, Heidelberg, New York, pp. 117-150.Google Scholar
Dal Negro, A., Carbonin, S., Domeneghetti, M. C, Molin, G. M., Cundari, A. and Piccirillo, E. M. (1984) Crystal chemistry and evolution of the clinopyroxene in a suite of high pressure ultra-mafic nodules from the Newer Volcanics of Victoria, Australia. Contrib. Mineral. Petrol, 86, 221–9.CrossRefGoogle Scholar
Dal Negro, A., Molin, G. M., Salviulo, G., Secco, L., Cundari, A. and Piccirillo, E. M. (1989) Crystal chemistry of clinopyroxene and its petrogenetic significance: a new approach. The Lithosphere in Italy (Boriani, A., Bonafede, M., Piccardo, G. B., and Vai, G. B., eds). Advances in Earth Science Research. Accademia Nazionale dei Lincei, Roma.Google Scholar
Domeneghetti, M. C, Molin, G. M. and Tazzoli, V. (1985) Crystal-Chemical implications of the Mg2 +-Fe2+ distribution in orthopyroxenes. Amer. Mineral, 70, 987–95.Google Scholar
Faraone, D., Molin, G. M., and Zanazzi, P. F. (1988) Clinopyroxenes from Vulcano (Aeolian Islands, Italy): Crystal chemistry and cooling history. Lithos, 22, 113–26.CrossRefGoogle Scholar
Ganguly, J. (1982) Mg-Fe order-disorder in ferro-magnesian silicates. II. In Thermodynamics, kinetics and geological applications. Vol. 2 (Saxena, S. K., ed.). Springer, New York, Berlin Heidelberg, 58-99.Google Scholar
International Tables for X-ray Crystallography (1974) Kynoch Press, Birmingham, G. B., Vol. IV, 99-101.Google Scholar
Jaeger, J. C. (1968) Cooling and solidification of igneous rocks. In Basalts. Vol. 2 (Hess, H. H. and Poldervaart, A., eds). Interscience Publ., New York, 503-36.Google Scholar
Kitamura, M., Yasuda, M., Watanabe, S., and Morimoto, N. (1983) Cooling history of pyroxene chondrules in the Yamato-74191 chondrite (L3), an electron microscopic study. Earth Planet. Sci. Lett., 63, 189–201.CrossRefGoogle Scholar
Lindsley, D. H. (1983) Pyroxene thermometry. Amer. Mineral, 68, 477–93.Google Scholar
Manoli, S. and Molin, G. M. (1988) Crystallographic procedures in the study of experimental rocks: X-ray single-crystal structure refinement of C2jc clinopyroxene from lunar 74275 high-pressure experimental basalt. Mineral Petrol, 39, 187–200.CrossRefGoogle Scholar
Molin, G. M. (1993) Crystal chemistry and intra-crystalline relationships of orthopyroxene in a suite of high pressure ultramafic nodules from the ‘Newer Volcanics’ of Victoria (Australia). Mineral Mag., 57.Google Scholar
Molin, G. M., Saxena, S. K., and Brizi, E. (1991) Iron-magnesium order-disorder in an orthopyr-oxene crystal from the Johnstown meteorite. Earth Planet. Sci. Lett., 105, 260–5.CrossRefGoogle Scholar
Molin, G. and Zanazzi, P. F. (1991) Intracrystalline Fe2+-Mg ordoering in augite: Experimental study and geothermometric applications. European J. Mineral, 3, 863–75.CrossRefGoogle Scholar
Muller, W. F. (1991) Microstructures of minerals in a chondrule from the Allende meteorite. II. Thermal history deduced from clinopyroxenes and other minerals. Neues Jahrb Mineral, Abh., 162, 237–59.Google Scholar
North, A. C. T., Phillips, D. C, and Mathews, F. S. (1968) A semi-empirical method of absorption correction. Ada Crystallogr., A24, 351-9.Google Scholar
Princivalle, F. and Secco, L. (1985) Crystal structure refinement of 13 olivines in the forsterite-fayalite series from volcanic rocks and ultramafic nodules. TMPM Tscherm. Mineral. Petrol. Mitt., 34, 105–15.CrossRefGoogle Scholar
Rossi, G., Smith, D. C, Ungaretti, L., and Domeneghetti, M. C. (1983) Crystal-chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contrib. Mineral Petrol, 83, 247–58.CrossRefGoogle Scholar
Saxena, S. K. and Dal Negro, A. (1983) Petrogenetic application of Mg-Fe2 + order-disorder in ortho-pyroxene to cooling history of rocks. Bull. Mineral., 106, 443–9.Google Scholar
Saxena, S. K., Domeneghetti, M. C, Molin, G. M., and Tazzoli, V. (1989) X-ray diffraction study of Fe2+-Mg order-disorder in orthopyroxene. Some kinetic results. Phys. Chem. Minerals, 16, 421–7.CrossRefGoogle Scholar
Skogby, H., Annersten, H., Domeneghetti, M. C, Molin, G. M., and Tazzoli, V. (1992) Iron distribution in orthopyroxene: A comparison of Mossbauer spectroscopy and X-ray refinement results. European J. Mineral, 4, 441–52.CrossRefGoogle Scholar
Takeda, H. (1972). Crystallographic studies of coexisting aluminian orthopyroxene and augite of high-pressure origin. J. Geophys. Res., 77, 5798-811.Google Scholar
Tokonami, M. (1965) Atomic scattering factors for O2”. Ada Crystallogr., 19, 486.Google Scholar
Tribaudino, M. and Talarico, F. (1992) Orthopyrox-enes from granulite rocks of the Wilson Terrane (Victoria Land, Antarctica): crystal chemistry and cooling history. European J. Mineral, 4, 453–63.CrossRefGoogle Scholar
Tsuchiyama, A., Nahagara, H., and Kusciro, I. (1980) Experimental reproduction of textures of chondrules. Earth Planet. Sci. Lett., 48, 155–65.CrossRefGoogle Scholar
Wang, D. and Rubin A. E. (1987) Petrology of nine ordinary chondrite falls from China. Meteoritics, 11, 97-104.Google Scholar
Watanabe, S., Kitamura, M., and Morimoto, N. (1985) A transmission electron microscope study of pyroxene chondrules in equilibrated L-group chondrites. Earth Planet. Sci. Lett., 11, 87-98.Google Scholar
Zachariasen, W. H. (1963) The secondary extinction correction. Ada Crystallogr., 16, 1139–44.CrossRefGoogle Scholar