Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T01:51:05.161Z Has data issue: false hasContentIssue false

X-ray and electron diffraction study of penfieldite: average structure and multiple cells

Published online by Cambridge University Press:  05 July 2018

S. Merlino
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 1-56126 Pisa, Italy
M. Pasero
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 1-56126 Pisa, Italy
N. Perchiazzi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 1-56126 Pisa, Italy
A. Gianfagna
Affiliation:
Dipartimento di Scienze della Terra, Università di Roma ‘La Sapienza’, P. le A. Moro 5, I-00185, Roma, Italy

Abstract

Penfieldite is a lead hydroxychloride mineral with composition Pb2Cl3(OH). It belongs to the hexagonal system, space group P, a = 11.393(3), c = 4.024(1) Å. The 4 Å c parameter corresponds to the basic sub-cell, whereas modulated structures are known with a true c axis 12 times longer. The average crystal structure of penfieldite has been solved with direct methods and refined to Rw = 0.041 for 871 refections collected with Mo-Kα radiation. The chemical and structural relationships between penfeldite and laurelite, Pb2F3(F,Cl,OH), are briefly discussed. An electron diffraction study of penfieldite revealed the occurrence, besides the common modulated structure with C = 12c, of domains with a 15c periodicity. Moreover, a 9c periodicity has been observed in crystals heated at 180°C Penfieldite is quickly destroyed above 200°C.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Cesbron, F. and Schubnel, H. J. (1968) Nouvelles donnes sur la penfieldite. Bull Soc. Fr. Mindral. Cristallogr., 91, 407–8.Google Scholar
Edwards, R., Gillard, R. D., Williams, P. A. and Pollard, A. M. (1992) Studies of secondary mineral formation in the PbO-HzO-HCI system. Mineral. Mag., 56, 53–65.CrossRefGoogle Scholar
Franzini, M. and Perchiazzi, N. (1992) I minerali delle scorie ferrifere etrusche di Baratti (Livorno). Atti Soc. Tosc. Sc. Nat., Ser. A, 99, 43–77.Google Scholar
Genth, F. A. (1892) On penfieldite, a new species. Amer. J. Sci., 44, 260.Google Scholar
Goni, J., Guillemin, C. and Perrimond-Tronchet, R. (1954) Description d'esp∼ces minrales nog∼nes form6es sur des jas d'ancres romaines immerges. Bull. Soc. Fr. Mineral. Cristallogr., 77, 474–8.Google Scholar
Gordon, S. G. (1941) Results of the Chilean mineralogical expedition of 1938. Part III — Penfieldite from Sierra Gorda, Chile. Not. Nat. Acad. Nat. Sci. Philadelphia, 69, 1–8.Google Scholar
Hamilton, W. C. and Ibers, J. A. (1968) Hydrogen Bonds in Solids. W. A. Benjamin, Inc., New York, 284 pp.Google Scholar
International Tables for X-ray Crystallography (1974) Vol. IV Ibers, J. A. and Hamilton, W. C. (eds), The Kynock Press, Birmingham, 362 pp.Google Scholar
Kampf, A. R., Dunn, P. J. and Foord, E. E. (1989) Grandreefite, pseudograndreefite, laurelite and aravapaite: four new minerals from the Grand Reef mine, Graham County, Arizona. Amer, Mineral., 74, 927–33.Google Scholar
Larsen, E. S. (1917) The optical properties of penfieldite. Amer. Mineral., 2, 20.Google Scholar
Merlino, S., Pasero, M. and Perchiazzi, N. (1993) Crystal structure of paralaurionite and its OD relationships with laurionite. Mineral. Mag. 57, 323–8.CrossRefGoogle Scholar
Merlino, S., Pasero, M. and Perchiazzi, N. (1994) Fiedlerite: revised chemical formula [Pb3C14F(OH)-HzO], OD description and crystal structure refinement of the two MDO polytypes. Mineral. Mag., 58, 69–78.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana's System of Mineralogy , Vol. H.J. Wiley and Sons, Inc., New York, 7th ed., 1124 pp.Google Scholar
Penfield, S. L. (1894) Mineralogical notes. Amer. J. Sci., 48, 114–8.CrossRefGoogle Scholar
Sheldrick, G. M. (1976) SHELX76 — Program for crystal structure determination. Univ. of Cambridge, England.Google Scholar
Sheldrick, G. M. (1986) SHELXS86 — Program for the solution of crystal structures. Univ. of G6ttingen, Germany.Google Scholar
Walker, N. and Stuart, D. (1984) An empirical method for correcting diffractometer data for absorption effects. Acta Crystallogr., A39, 158-66.Google Scholar

References

Cesbron, F. and Schubnel, H. J. (1968) Nouvelles donnes sur la penfieldite. Bull Soc. Fr. Mindral. Cristallogr., 91, 407–8.Google Scholar
Edwards, R., Gillard, R. D., Williams, P. A. and Pollard, A. M. (1992) Studies of secondary mineral formation in the PbO-HzO-HCI system. Mineral. Mag., 56, 53–65.CrossRefGoogle Scholar
Franzini, M. and Perchiazzi, N. (1992) I minerali delle scorie ferrifere etrusche di Baratti (Livorno). Atti Soc. Tosc. Sc. Nat., Ser. A, 99, 43–77.Google Scholar
Genth, F. A. (1892) On penfieldite, a new species. Amer. J. Sci., 44, 260.Google Scholar
Goni, J., Guillemin, C. and Perrimond-Tronchet, R. (1954) Description d'esp∼ces minrales nog∼nes form6es sur des jas d'ancres romaines immerges. Bull. Soc. Fr. Mineral. Cristallogr., 77, 474–8.Google Scholar
Gordon, S. G. (1941) Results of the Chilean mineralogical expedition of 1938. Part III — Penfieldite from Sierra Gorda, Chile. Not. Nat. Acad. Nat. Sci. Philadelphia, 69, 1–8.Google Scholar
Hamilton, W. C. and Ibers, J. A. (1968) Hydrogen Bonds in Solids. W. A. Benjamin, Inc., New York, 284 pp.Google Scholar
International Tables for X-ray Crystallography (1974) Vol. IV Ibers, J. A. and Hamilton, W. C. (eds), The Kynock Press, Birmingham, 362 pp.Google Scholar
Kampf, A. R., Dunn, P. J. and Foord, E. E. (1989) Grandreefite, pseudograndreefite, laurelite and aravapaite: four new minerals from the Grand Reef mine, Graham County, Arizona. Amer, Mineral., 74, 927–33.Google Scholar
Larsen, E. S. (1917) The optical properties of penfieldite. Amer. Mineral., 2, 20.Google Scholar
Merlino, S., Pasero, M. and Perchiazzi, N. (1993) Crystal structure of paralaurionite and its OD relationships with laurionite. Mineral. Mag. 57, 323–8.CrossRefGoogle Scholar
Merlino, S., Pasero, M. and Perchiazzi, N. (1994) Fiedlerite: revised chemical formula [Pb3C14F(OH)-HzO], OD description and crystal structure refinement of the two MDO polytypes. Mineral. Mag., 58, 69–78.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana's System of Mineralogy , Vol. H.J. Wiley and Sons, Inc., New York, 7th ed., 1124 pp.Google Scholar
Penfield, S. L. (1894) Mineralogical notes. Amer. J. Sci., 48, 114–8.CrossRefGoogle Scholar
Sheldrick, G. M. (1976) SHELX76 — Program for crystal structure determination. Univ. of Cambridge, England.Google Scholar
Sheldrick, G. M. (1986) SHELXS86 — Program for the solution of crystal structures. Univ. of G6ttingen, Germany.Google Scholar
Walker, N. and Stuart, D. (1984) An empirical method for correcting diffractometer data for absorption effects. Acta Crystallogr., A39, 158-66.Google Scholar