Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:24:05.190Z Has data issue: false hasContentIssue false

Vanadian and chromian garnet- and epidote-supergroup minerals in metamorphosed Paleozoic black shales from Čierna Lehota, Strážovské vrchy Mountains, Slovakia: crystal chemistry and evolution

Published online by Cambridge University Press:  21 May 2018

Peter Bačík*
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy and Petrology, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Pavel Uher
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy and Petrology, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Petra Kozáková
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy and Petrology, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Martin Števko
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy and Petrology, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Daniel Ozdín
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Mineralogy and Petrology, Ilkovičova 6, 842 15 Bratislava, Slovak Republic
Tomáš Vaculovič
Affiliation:
Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, 611 37 Brno, Czech Republic
*

Abstract

Silicate minerals enriched in V, Cr and Mn including garnets and epidote-supergroup members, in association with amphiboles, albite, hyalophane, titanite, chamosite, sulfides and other minerals occur in Devonian black shales near Čierna Lehota in the Strážovské vrchy Mountains, Slovakia. The garnets have high concentrations of V, Cr and Mn (up to 17 wt.% V2O3, ≤11 wt.% Cr2O3 and ≤ 21 wt.% MnO) and several compositional types. Vanadian-chromian grossular (Grs 1) usually preserves primary metamorphic oscillatory zoning, whereas solid solutions between goldmanite (Gld 2A,B), V- and Cr-rich grossular and spessartine (Grs 2A,B, Sps 2) form irregular domains or crystals with variable zoning. Dominant substitutions in the garnets include CaMn–1 and (V,Cr)Al–1, resulting in coupled Ca(V,Cr)Mn–1Al–1. Epidote-supergroup minerals occur as abundant anhedral crystals with variable compositional zoning. Nearly all crystals have a complete zoning sequence beginning with REE-rich allanite-(La), followed by mukhinite and by V- and Cr-rich clinozoisite to mukhinite and V- and Cr-poor clinozoisite. In common with garnets, the epidote-supergroup minerals are enriched in V, Cr and Mn (<7 wt.% V2O3, <5 wt.% Cr2O3 and <3 wt.% MnO). Lanthanum is the dominant REE (up to 11.5 wt.% La2O3) in allanite-(La). The composition of epidote-supergroup minerals is controlled by REEFe2+(CaAl)–1, REEMg(CaAl)–1, REEMn2+(CaAl)–1 and REEFe2+(CaFe3+)–1 substitutions introducing REE, together with VAl–1 and CrAl–1 substitutions. The negative Ce and slightly positive Eu anomalies displayed in chondrite-normalized patterns and enrichment in V, Cr and Mn are ascribed to the geochemical properties of the protolith. The minerals investigated exhibit multi-stage evolution: (1) presumed low-grade greenschist-facies metamorphism; and (2) development of V- and Cr-rich zones in both garnet- and epidote-supergroup minerals which result from late-Variscan contact metamorphism due to granitic intrusion of the Suchý Massif. Decreased temperature following the metamorphic peak probably resulted in the formation of REE-, V- and Cr-poor clinozoisite and secondary garnet.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ed Grew

References

Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.Google Scholar
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss-Assbichler, S., Liebscher, A., Menchetti, S., Pan, Y. and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567.Google Scholar
Bačík, P. and Uher, P. (2010) Dissakisite-(La), mukhinite, and clinozoisite: V,Cr,REE-rich members of the epidote group in amphibole-pyrite-pyrrhotite metabasic rocks from Pezinok, Rybníček mine, Western Carpathians, Slovakia. Canadian Mineralogist, 48, 523536.Google Scholar
Benkerrou, C. and Fonteilles, M. (1989) Vanadian garnets in calcareous metapelites and skarns at Coat-an Noz, Belle-Isle-en-Terre (Côtes du Nord), France. American Mineralogist, 74, 852858.Google Scholar
Bonazzi, P., Menchetti, S. and Reinecke, T. (1996) Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros Island, Greece. American Mineralogist, 81, 735742.Google Scholar
Broska, I. and Uher, P. (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geologica Carpathica, 52, 7990.Google Scholar
Cambel, B. (1958) Contribution to geology of the Pezinok-Pernek crystalline complex. Acta geologica et geographica Universitatis Comenianae, Geologica, 1, 137166 [in Slovak].Google Scholar
Canet, C., Alfonso, P., Melgarejo, J.-C. and Jorge, S. (2003) V-rich minerals in contact-metamorphosed Silurian SEDEX deposits in the Poblet area, southwestern Catalonia, Spain. Canadian Mineralogist, 41, 561579.Google Scholar
Černý, P., Litochleb, J. and Šrein, V. (1995) Chromian-vanadian garnets from Domoradice near Český Krumlov graphite deposit. Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 3, 205209 [in Czech].Google Scholar
Dollase, W.A. (1968) Refinement and comparison of the structures of zoisite and clinozoisite. American Mineralogist, 53, 18821898.Google Scholar
Dyda, M. (1994) Geothermobarometric characteristics of some Tatric crystalline basement Units (Western Carpathians). Mitteilungen der Österreichischen Geologischen Gesellschaft, 86, 4559.Google Scholar
Enami, M. and Zang, Q. (1988) Magnesian staurolite in garnet-corundum rocks and eclogite from the Donghai district, Jiangsu province, east China. American Mineralogist, 73, 4856.Google Scholar
Ercit, T.S. (2002) The mess that is allanite. Canadian Mineralogist, 40, 14111419.Google Scholar
Filippovskaya, T.B., Shevnin, A.N. and Dubakina, L.S. (1972) Vanadian garnets and hydrogarnets from Lower Paleozoic carbon- and silica-rich schists of Ishimskaya Luka (Northern Kazakhstan). Doklady Akademii Nauk SSSR, Earth Science Section, 203, 11731176 [in Russian].Google Scholar
Finger, F., Broska, I., Haunschmid, B., Hraško, L., Kohút, M., Krenn, E., Petrík, I., Riegler, G. and Uher, P. (2003) Electron-microprobe dating of monazites from Western Carpathian basement granitoids: Plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. International Journal of Earth Sciences, 92, 8698.Google Scholar
Gieré, R. and Sorensen, S. (2004) Allanite and other REE-rich epidote-group minerals. Reviews in Mineralogy and Geochemistry, 56, 431494.Google Scholar
Grew, E.S., Marsh, J.H., Yates, M.G., Lazic, B., Armbruster, T., Locock, A.J., Bell, S.W., Dyar, M.D., Bernhardt, H.-J. and Medenbach, O. (2010) Menzerite-(Y), a new garnet species, {(Y,REE)(Ca,Fe2+)2}[(Mg,Fe2+)(Fe3+,Al)](Si3)O12, from a felsic granulite, Parry Sound, Ontario, and a new garnet end-member, {Y2Ca}[Mg2](Si3)O12. Canadian Mineralogist, 48, 11711193.Google Scholar
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hålenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.Google Scholar
Hovorka, D. and Fejdi, P. (1983) Garnets of peraluminous granites of the Suchý and Malá Magura Mts. (the Western Carpathians) their origin and petrological significance. Geologický zborník – Geologica Carpathica, 34, 103115.Google Scholar
Hovorka, D. and Méres, Š. (1991) Pre-Upper Carboniferous gneisses of the Strážovské vrchy Upland and the Malá Fatra Mts. (the Western Carpathians). Acta Geologica et Geographica Universitatis Comenianae, Geologica, 46, 103169.Google Scholar
Hrouda, F., Kahan, S. and Putiš, M. (1983) The magnetic and mesoscopic fabrics of the crystalline complex of the Strážovské vrchy Mts. and their tectonic implications. Geologica Carpathica, 34, 717731.Google Scholar
Ivan, P. and Méres, Š. (2015) Geochemistry of amphibolites and related graphitic gneisses from the Suchý and Malá Magura Mountains (central Western Carpathians) – evidence for relics of the Variscan ophiolite complex, Geologica Carpathica, 66, 347360.Google Scholar
Jeong, G.Y. and Kim, Y.H. (1999) Goldmanite from the black slates of the Ogcheon belt, Korea. Mineralogical Magazine, 63, 253256.Google Scholar
Kahan, Š. (1979) Geologic profiles across crystalline complexes of the Strážovské vrchy Hills (Suchý a Malá Magura Mts.). Pp. 153160 in: Tectonic profiles across the Západné Karpaty Mts (Maheľ, M., editor). Dionýz Štúr Geological Institute, Bratislava.Google Scholar
Kahan, Š. (1980) Strukturelle und metamorphe Charakteristik des Kristallins des Gebirges Strážovské vrchy (Suchý und Malá Magura). Geologický zborník – Geologica Carpathica, 31, 577601.Google Scholar
Karev, M.E. (1974) New finds of vanadium-containing minerals in metamorphic rocks of the Kuznetsk Alatau. Geologiya i Geofizika, 11, 141143 [in Russian].Google Scholar
Kato, A., Shimizu, M., Okada, Y., Komuro, Y. and Takeda, K. (1994) Vanadium-bearing spessartine and allanite in the manganese–iron ore from the Odaki orebody of the Kyurazawa mine, Ashio Town, Tochigi Prefecture, Japan. Bulletin of the National Science Museum, Tokyo, Series C, 20, 112.Google Scholar
Konečný, P., Siman, P., Holický, I., Janák, M. and Kollárová, V. (2004) Method of monazite dating by means of the microprobe. Mineralia Slovaca, 36, 225235.Google Scholar
Korikovsky, S.P., Cambel, B., Miklóš, J. and Janák, M. (1984) Metamorphism of the Malé Karpaty crystalline complex: Stages, zonality, relationship to granitic rocks. Geologický zborník – Geologica Carpathica, 35, 437462 [in Russian].Google Scholar
Koski, R.A. and Hein, J.R. (2003) Stratiform barite deposits in the Roberts Mountains allochthon, Nevada a review of potential analogs in modern sea-floor environments. Pp. 117 in: Contributions to Industrial Minerals Research. (Bliss, J.D., Moyle, P.R. and Long, K.R., editors). U.S. Geological Survey Bulletin 2209-H.Google Scholar
Kráľ, J., Hess, C., Kober, B. and Lippolt, H.J. (1997) 207Pb/206Pb and 40Ar/39Ar age data from plutonic rocks of the Strážovské vrchy Mts. basement, Western Carpathians. Pp. 253260 in: Geological Evolution of the Western Carpathians (Grecula, P., Hovorka, D. and Putiš, M., editors). Mineralia Slovaca Monograph, Bratislava.Google Scholar
Krist, E., Korikovskij, S.P., Putiš, M., Janák, M. and Faryad, S.W. (1992) Geology and Petrology of Metamorphic Rocks of the Western Carpathian Crystalline Complex. Comenius University Press, Bratislava, 324 pp.Google Scholar
Litochleb, J., Novická, Z. and Burda, J. (1985) Vanadian garnets in Proterozoic metasilicites from Struhadlo near Klatovy. Časopis Národního Muzea Řada Přírodovědná, 151, 3134 [in Czech].Google Scholar
Litochleb, J., Sejkora, J. and Šrein, V. (1997) Vanadian garnets from Český Krumlov–Městský vrch graphite deposit. Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 4–5, 159160 [in Czech].Google Scholar
Maheľ, M. (1986) Geological structure of the Czechoslovakian Carpathians. 1. Paleoalpine units. Veda, Bratislava, 503 pp. [in Slovak].Google Scholar
Maheľ, M., Kahan, Š., Gross, P., Vaškovský, I. and Salaj, J. (1982) Geological map of the Strážovské vrchy Hills, 1: 50,000. Dionýz Štúr Geological Institute, Bratislava.Google Scholar
Makrygina, V.A., Petrova, Z.I., Koneva, A.A. and Suvorova, L.F. (2004) Finding of Cr-V-containing minerals in marbles and quartzites of the Svyatoi Nos Peninsula (Lake Baikal). Russian Geology and Geophysics, 45, 14411449.Google Scholar
Matsubara, S., Miyawaki, R., Yokoyama, K., Shigeoka, M., Miyajima, H., Suzuki, Y., Murakami, O. and Ishibashi, T. (2010) Momoiite and nagashimalite from the Tanohata mine, Iwate Prefecture, Japan. Bulletin of the National Science Museum, Tokyo, Series C, 36, 16.Google Scholar
Méres, Š. (2005) Major, trace element and REE geochemistry of the metamorphosed sedimentary rocks from the Malé Karpaty Mts. (Western Carpathians, Slovak Republic): an implication for sedimentary and metamorphic processes. Slovak Geological Magazine, 11, 107122.Google Scholar
Mikuš, T., Chovan, M., Ponomarenko, O., Bondarenko, S. and Grinchenko, O. (2013) Hydrothermal nickel mineralization from the black shales in Čierna Lehota (Western Carpathians, Slovakia). Mineralogicheskii Zhurnal (Ukraine), 35, 2732.Google Scholar
Moench, R.H. and Meyrowitz, R. (1964) Goldmanite, a vanadium garnet from Laguna, New Mexico. American Mineralogist, 49, 644655.Google Scholar
Momoi, H. (1964) A new vanadium garnet, (Mn,Ca)3V2Si3O12, from the Yamato Mine, Anami Islands, Japan. Memoirs of the Faculty of Science Kyushu University, Series D, Geology, 15, 7378.Google Scholar
Nagashima, M., Akasaka, M. and Sakurai, T. (2006) Chromian epidote in omphacite rocks from the Sambagawa metamorphic belt, central Shikoku, Japan. Journal of Mineralogical and Petrological Sciences, 101, 157169.Google Scholar
Nagashima, M., Akasaka, M., Kyono, A., Makino, K. and Ikeda, K. (2007) Distribution of chromium among the octahedral sites in chromian epidote from Iratsu, central Shikoku, Japan. Journal of Mineralogical and Petrological Sciences, 102, 240254.Google Scholar
Nagashima, M., Armbruster, T., Herwegh, M., Pettke, T., Lahti, S. and Grobéty, B. (2011) Severe structural damage in Cr- and V-rich clinozoisite: relics of an epidote-group mineral with Ca2Al2Cr3+Si3O12(OH) composition? European Journal of Mineralogy, 23, 731743.Google Scholar
Nagashima, M., Nishio-Hamane, D., Tomita, N., Minakawa, T. and Inaba, S. (2013) Vanadoallanite-(La): a new epidote-supergroup mineral from Ise, Mie Prefecture, Japan. Mineralogical Magazine, 77, 27392752.Google Scholar
Nagashima, M., Nishio-Hamane, D., Tomita, N., Minakawa, T. and Inaba, S. (2015) Ferriakasakaite-(La) and ferriandrosite-(La): new epidote-supergroup minerals from Ise, Mie Prefecture, Japan. Mineralogical Magazine, 79, 735754.Google Scholar
Osanai, Y., Ueno, T., Tsuchiya, N., Takahashi, Y., Tainosho, Y. and Shiraishi, K. (1990) Finding of vanadium-bearing garnet from the Sør Rondane Mountains, East Africa. The Antarctic Record, 34, 279291.Google Scholar
Ovchinnikov, L.N. and Tzimbalenko, M.N. (1948) Manganorthite from Vishnevy Mts. Doklady Akademii Nauk SSSR, 63, 191194 [in Russian].Google Scholar
Pan, Y. and Fleet, M.E. (1991) Vanadian allanite-(La) and vanadian allanite-(Ce) from the Hemlo gold deposit, Ontario, Canada. Mineralogical Magazine, 55, 497507.Google Scholar
Petrík, I., Broska, I., Lipka, J. and Siman, P. (1995) Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geologica Carpathica, 46, 7994.Google Scholar
Pirajno, F. (1992) Hydrothermal Mineral Deposits: Principles and Fundamental Concepts for the Exploration Geologist. Springer-Verlag, Berlin, 709 pp.Google Scholar
Pirajno, F. (2009) Hydrothermal Processes and Mineral Systems. Springer-Verlag, Berlin, 1250 pp.Google Scholar
Plašienka, D., Grecula, P., Putiš, M., Kováč, M. and Hovorka, D. (1997) Evolution and structure of the Western Capathians: an overview. Pp. 124 in: Geological Evolution of the Western Carpathians (Grecula, P., Hovorka, D. and Putiš, M., editors). Mineralia Slovaca Monograph, Bratislava.Google Scholar
Pršek, J., Mikuš, T., Makovicky, E. and Chovan, M. (2005) Cuprobismutite, kupčíkite, hodrushite and associated sulfosalts from the black shale hosted Ni-Bi-As mineralization at Čierna Lehota, Slovakia. European Journal of Mineralogy, 17, 155162.Google Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708.Google Scholar
Putnis, A. (2009) Mineral replacement reactions. Pp. 87124 in: Thermodynamics and Kinetics of Water–Rock Interactions (Oelkers, E.H. and Schott, J., editors). Reviews in Mineralogy & Geochemistry, 70. Mineralogical Society of America and The Geochemical Society, , Washington DC.Google Scholar
Rao, A.T. and Babu, V.R.R.M., (1978) Allanite in charnockites from Air Port Hill, Visakhapatnam, Andhra Pradesh, India. American Mineralogist, 63, 330331.Google Scholar
Rouse, R.C. and Peacor, D.R. (1993) The crystal structure of dissakisite-(Ce), the Mg analogue of allanite-(Ce). Canadian Mineralogist, 31, 153157.Google Scholar
Secco, L., Martignaco, F., Dal Negro, A., Reznitskii, L.Z. and Sklyarov, E.V. (2002) Crystal chemistry of Cr3+-V3+-rich clinopyroxenes. American Mineralogist, 87, 709714.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Shepel, A.V. and Karpenko, M.V. (1969) Mukhinite, a new vanadium species of epidote. Doklady Academii Nauk SSSR, 185, 13421345 [in Russian].Google Scholar
Tanaka, H., Endo, S., Minakawa, T., Enami, M., Nishio-Hamane, D., Miura, H. and Hagiwara, A. (2010) Momoiite, (Mn2+,Ca)3(V3+,Al)2Si3O12, a new manganese Vanadium garnet from Japan. Journal of Mineralogical and Petrological Sciences, 105, 9296.Google Scholar
Torres-Ruiz, J., Pesquera, A. and López Sánchez-Vizcaíno, V. (2003) Chromian tourmaline and associated Cr-bearing minerals from the Nevado-Filábride Complex (Betic Cordilleras, SE Spain). Mineralogical Magazine, 67, 517533.Google Scholar
Treloar, P.J. (1987 a) Chromian muscovites and epidotes from Outokumpu, Finland. Mineralogical Magazine, 51, 593599.Google Scholar
Treloar, P.J. (1987 b) The Cr-minerals of Outokumpu–Their chemistry and significance. Journal of Petrology, 28, 867886.Google Scholar
Treloar, P.J. and Charnley, N.R. (1987) Chromian allanite from Outokumpu, Finland. Canadian Mineralogist, 25, 413418.Google Scholar
Uher, P., Chovan, M. and Majzlan, J. (1994) Vanadian-chromian garnet in mafic pyroclastic rocks of the Malé Karpaty Mts., Western Carpathians, Slovakia. Canadian Mineralogist, 32, 319326.Google Scholar
Uher, P., Kováčik, M., Kubiš, M., Shtukenberg, A. and Ozdín, D. (2008) Metamorphic vanadian-chromian silicate mineralization in carbon-rich amphibole schists from the Malé Karpaty Mountains, Western Carpathians, Slovakia. American Mineralogist, 93, 6373.Google Scholar
Uher, P., Ondrejka, M., Bačík, P., Broska, I. and Konečný, P. (2015) Britholite, monazite, REE carbonates, and calcite: Products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia. Lithos, 236–237, 212225.Google Scholar
Vilinovičová, Ľ. (1990) Petrogenesis of gneisses and granitoids from the Strážovské vrchy Mts. Geologica Carpathica, 41, 335376.Google Scholar
Yang, J.-J. and Enami, M. (2003) Chromian dissakisite-(Ce) in a garnet lherzolite from the Chinese Su-Lu UHP metamorphic terrane: Implications for Cr incorporation in epidote-group minerals and recycling of REE into the Earth's mantle. American Mineralogist, 88, 604610.Google Scholar