Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T14:23:18.814Z Has data issue: false hasContentIssue false

Twin walls and hierarchical mesoscopic structures

Published online by Cambridge University Press:  05 July 2018

E. K. H. Salje*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
U. Bismayer
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
S. A. Hayward
Affiliation:
Departamento de Fisica de la Materia Condensada, Universidad de Sevilla, PO Box 1065, E-41080 Sevilla, Spain
J. Novak
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
*

Abstract

Networks of interacting twin walls form hierarchical, mesoscopic structures in minerals. The typical thickness of transformation twins at TTC is ˜3 nm and increases at TTC as . The internal structure of twin walls is derived to be chiral in systems with coupled order parameters. The effect of wall bending is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrinkosov, A.A., Buzdin, A.I., Kulic, M.L. and Kuptsov, D.A. (1988) Int. J. Modern Phys. B, 1, 1045.CrossRefGoogle Scholar
Aird, A. and Salje, E.K.H. (1998) Sheet superconductivity in twin walls: experimental evidence of WO3−x . J. Phys.: Cond. Matter, 10, L377–L380.Google Scholar
Bismayer, U. and Ower, R.W. (1995) Hard mode Raman spectroscopy and renormalization phenomena in diluted lead phosphate, (Pb1−xBax)3(PO4)2 . J. Mol. Struct., 349, 385–8.CrossRefGoogle Scholar
Bismayer, U., Hensler, J., Salje, E. and Güttler, B. (1994) Renormalization phenomena in Ba-diluted ferroelastic lead phosphate, (Pb1−xBax)3(PO4)2 . Phase Transitions, 48, 149–68.CrossRefGoogle Scholar
Bismayer, U., Mathes, D., Bosbach, D., Putnis, A., van Tendeloo, G., Novak, J. and Salje, E.K.H. (2000) Ferroelastic orientation states and domain walls in lead-phosphate-type crystals. Mineral. Mag., 64, 233–9.CrossRefGoogle Scholar
Bosbach, D., Putnis, A., Bismayer, U. and Güttler, B. (1997) An AFM study on ferroelastic domains in lead phosphate, Pb3(PO4)2 . J. Phys.: Cond. Matter, 9, 8397–405.Google Scholar
Boulestieux, C., Yangui, B., Nihoul, G. and Barret, A. (1983) High-resolution and conventional electron-microscopy studies of repeated wedge microtwins in monoclinic rare-earth sesquoxides. J. Microsc., 129, 315–26.CrossRefGoogle Scholar
Bratkovsky, A.M., Salje, E.K.H., Marais, S.C. and Heine, V. (1994 a) Theory and computer simulation of the tweed texture. Phase Transitions, 48, 113.CrossRefGoogle Scholar
Bratkovsky, A.M., Salje, E.K.H. and Heine, V. (1994 b) Overview of the origin of tweed texture. Phase Transitions, 52, 7783.CrossRefGoogle Scholar
Bueble, S., Knorr, K., Brecht, E. and Schmahl, W. (1998) Influence of the ferroelastic twin domain structure on the 100 surface morphology if LaAlO3 HTSC substrates. Surf. Sci., 400, 345–55.CrossRefGoogle Scholar
Bulaevski, L.N. and Ginzburg, V.L. (1964) Temperature dependence of the shape of the domain wall in ferromagnetics and ferroelectrics. Soviet Physics JETP, 18, 530–5.Google Scholar
Chrosch, J. and Salje, E.K.H. (1994) Thin domain walls in YBa2Cu3O7−δ and their rocking curves: An X-ray diffraction study. Phys. C, 225, 111–6.CrossRefGoogle Scholar
Chrosch, J. and Salje, E.K.H. (1999) The temperature dependence of the domain wall width in LaAlO3 . J. Appl. Physics, 85, 722–7.CrossRefGoogle Scholar
Coullet, P., Lega, J. and Houchmandzadeh, B. (1990) Breaking chirality in nonequilibrium systems. Phys. Rev. Lett., 65, 1352–5.CrossRefGoogle ScholarPubMed
Geller, S. and Bala, V.B. (1956) Crystallographic studies of perovskite-like compounds II. Rare earth aluminates. Acta Crystallogr., 9, 1019–25.CrossRefGoogle Scholar
Hayward, S.A. and Salje, E.K.H. (2000) Twin memory and twin amnesia in anorthoclase. Mineral. Mag., 64, 195200.CrossRefGoogle Scholar
Hayward, S.A., Chrosch, J., Salje, E.K.H. and Carpenter, M.A. (1996) Thickness of pericline twin walls in anorthoclase: an X-ray diffraction study. Eur. J. Mineral., 8, 1301–10.CrossRefGoogle Scholar
Hayward, S.A., Salje, E.K.H. and Chrosch, J. (1998) Local fluctuations in feldspar frameworks. Mineral. Mag., 62, 639–45.CrossRefGoogle Scholar
Houchmandzadeh, B., Lajzerowicz, J. and Salje, E.K.H. (1991) Order parameter coupling and chirality of domain walls. J. Phys.: Cond. Matter, 3, 5163–9.Google Scholar
Krotov, Yu A. and Suslov, I.M. (1993)Towards the possibility of increasing TC of oxide superconductors through coherent interaction of planar defects. Physica C, 213, 421–6.CrossRefGoogle Scholar
Lacayo, G., Kästner, G. and Herrmann, R. (1992) Twin to tweed transition in YBa2Cu3O7−δ by substitution of Al for Cu. Physica C, 192, 207–14.CrossRefGoogle Scholar
Lajzerowicz, J. and Niez, J.J. (1978) Solitons and Condensed Matter Physics (Bishop, A.R. and Schneider, T., editors). Springer, Berlin.Google Scholar
Landau, L.D. and Lifshitz, E.M. (1980) Statistical Physics. Pergamon Press, Oxford.Google Scholar
Locherer, K.R., Chrosch, J. and Salje, E.K.H. (1998) Diffuse X-ray scattering in WO3 . Phase Transitions, 67, 5163.CrossRefGoogle Scholar
Magyari, E. and Thomas, H. (1984) Solitary waves in a 1D anharmonic lattice with two-component order parameter. Phys. Lett., 100A, 11–4.CrossRefGoogle Scholar
Magyari, E. and Thomas, H. (1986) Stability of solitons. Helv. Physica Acta, 59, 845–58.Google Scholar
Müller, K.A. and Berlinger, W. (1971) Static critical exponents at structural phase transitions. Phys. Rev. Lett., 26, 13–6.CrossRefGoogle Scholar
Novak, J. and Salje, E.K.H. (1998 a) Simulated mesoscopic structures of a domain wall in a ferroelastic lattice. Eur. Phys. J. B, 4, 279–84.CrossRefGoogle Scholar
Novak, J and Salje, E.K.H. (1998 b) Surface structure of domain walls. J. Phys.: Cond. Matter, 10, L359–66.Google Scholar
Parlinski, K., Salje, E.K.H. and Heine, V. (1993 a) Annealing of tweed microstructure in high TC superconductors studied by a computer simulation. Acta Metall. Mater., 41, 839–47.CrossRefGoogle Scholar
Parlinski, K., Salje, E.K.H. and Heine, V. (1993 b) Origin of tweed texture in the simulation of a cuprate superconductor. J. Phys.: Cond. Matter, 5, 497518.Google Scholar
Putnis, A. and Salje, E.K.H. (1994) Tweed microstructures – experimental observations and some theoretical models. Phase Transitions, 48, 85105.CrossRefGoogle Scholar
Roewer, R.W., Bismayer, U., Morgenroth, W. and Güttler, B. (1997) Ferroelastic phase transition, domain pattern and metastability in diluted lead phosphate-type crystals. Solid State Ionics, 101–103, 585–9.CrossRefGoogle Scholar
Roucau, C., Tanaka, M., Torres, J. and Ayroles, R. (1979) Electron-microscope study of the structure related to the ferroelastic properties of lead phosphate Pb3(PO4)2 . J. Microsc., 4, 603–10.Google Scholar
Salje, E.K.H. (1993) Phase Transitions in Ferroelastic and Co-elastic Crystals (Student edition). Cambridge University Press, Cambridge, UK.Google Scholar
Salje, E.K.H. and Devarajan, V. (1986) Phase transitions in systems with strain-induced coupling between two order parameters. Phase Transitions, 6, 235–48.CrossRefGoogle Scholar
Salje, E.K.H. and Ishibashi, Y. (1996) Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains. J. Phys: Cond. Matter, 8, 1–19.Google Scholar
Salje, E.K.H., Buckley, A., van Tendeloo, G., Ishibashi, Y. and Nord, G.L. Jr. (1998) Needle twins and right-angled twins in minerals: comparison between experiment and theory. Amer. Mineral., 83, 811–22.CrossRefGoogle Scholar
Schmahl, W.W., Putnis, A., Salje, E.K.H., Greeman, P., Graeme-Barber, A., Jones, R., Singh, K.K., Blunt, J., Edwards, P.P., Loram, J. and Mirza, K. (1989) Twin formation and structural modulations in orthorhombic and tetragonal YBa2(Cu1−xCox)3O7−δ Phil. Mag. Lett., 60, 241–51.CrossRefGoogle Scholar
Selvmanickam, V., Mironova, M., Son, S. and Salama, K. (1993) Flux pinning by dislocations in deformed melt textured YBa2Cu3O7−δ supercond uctors. Physica C, 208, 238–44.CrossRefGoogle Scholar
Shi, D., Sengupta, S., Luo, J.S., Varanasi, C. and McGinn, P.J. (1993) Extremely fine precipitates and flux pinning in melt processed YBa2Cu3O7−δ . Physica C, 213, 179–84.CrossRefGoogle Scholar
Tsai, F., Khiznichenko, V. and Cowley, J.M. (1992) High-resolution electron microscopy of 90-degrees ferroelectric domain boundaries in BaTiO3 and Pb(Zr0.52Ti0.48)O3 . Ultramicroscopy, 45, 5563.CrossRefGoogle Scholar
Van Tendeloo, G., Broddin, D., Zandbergen, H.W. and Amelinckx, S. (1990) Phase separation in Nd2−xCexCuO4. Evidence for superconductivity at a single composition. Physica C, 167, 627–36.CrossRefGoogle Scholar
Viswanthan, K. and Salje, E.K.H. (1981) Crystal structure and charge carrier behaviour of (W12.64Mo1.36)O41 and its significance to other related compounds. Acta Crystallogr. A, 37, 449–56.CrossRefGoogle Scholar
Wruck, B., Salje, E.K.H., Zhang, M., Abraham, T. and Bismayer, U. (1994) On the thickness of ferroelastic twin walls in lead phosphate Pb3(PO4)2: an X-ray diffraction study. Phase Transitions, 48, 135–48.CrossRefGoogle Scholar
Yamamoto, M., Yagi, K. and Honjo, G. (1977) Electron microscopic studies of ferroelectric and ferroelastic Gd2(MoO4)3 I: General features of ferroelectric domain wall, antiphase boundary and crystal defects. Physica Status Solidi A, 41, 523–34.CrossRefGoogle Scholar
Zhu, Y. and Cowley, J.M. (1994) Three dimensional structural modulation in doped YBa2Cu3O7−δ . Phil. Mag. A, 69, 397408.CrossRefGoogle Scholar
Zhu, Y., Suenaga, M., Moodenbaugh, A.R. (1990) Displacement wave of the tweed structure in Y–Ba–Cu–O oxides. Phil. Mag. Lett., 62, 51–9.CrossRefGoogle Scholar
Zhu, Y., Suenaga, M. and Tafto, J. (1993) Interpretation of tweed contrast from the YBa2Cu3O7−δsystem. Phil. Mag. A, 67, 573–83.CrossRefGoogle Scholar